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Chapter 1

1.1 Introduction

Wastewater treatment systems with use of microalgal biomass represemisreasingly
attractivestrategy. Indeed, microalgae hawe tapacity for intensive nutrient removal from
wastewater. Further green microalgae have the capacity to fix inorganic carbon source (Sydney
et al., 2010) and in combination with nutrients uptake (nitrogen and phospluomsert itinto

biomass and highly valuable molecules. In this regard, the use of microalgae for removal of
nutrients and carbon dioxide uptake (Aslan Kaglan, 2008is an emerging teclatogywhich

offers several advantagesver conventional techwlogies for wastewater treatment. In
particular, as microalgae produce oxygen by photosynthetic activity, the dissolved oxygen in
the aqueous phase increases. This could be interesting when stringent standard discharge limits
for dissolved oxygen are impeas or in case when a consortium of microalgae and bacteria is
used for aerobic wastewater treatment (Van den Hende et al., 2011) as this could significantly
decrease the aeration cost of waste water treatment. The latter is the major operational cost

within conventional wastewater treatment systems

A major drawback and even a possible obstruction to the implementation of microalgal systems
on industrial scale, is the high harvesting cost. Indeed, due to the dilute nature of harvested
microalgae cultureghe dewatering is a huge operational cost rendering microalgal systems
less economic attraceM(Uduman et al., 2010). Furtiheore,in theabsence of lighmicroalgal

species will consume oxygdy respiration.

Optimization of this biological process ishaeved by determining the optimal growth
conditions for microalgal biomass. A cesffective and efficient method is the use of kinetic
growth model s. With such models #fAin silicoo
behavior of the microalgal bioras. However, setting up and performing such experiments in

the virtual world alone is not enough. Indeed, next to model development and use, experimental
data generation and mining in view of model calibration and validation is very important. Such
experiments that aim at obtaining suitable data regarding microalgal growth, often require
proxy measurements, for example chlorophyll content and lipid coiteggneral the analysis

protocol for these measurements are very time consuming and require gonchtguactice.

In view of this, respirometry offers a low c@dternative and isather easy to perform



Introduction, aims, objectives and thesis outline

1.2 Aims and objectives

Accurate represeation of algal growth is one of timeost difficult and poorly understood areas

in water quality modelling. lyal growth is inherently complex, in general showing-tinaar
responses to various environmental parameters such as temperature, light and several nutrients,
as well as demonstrating poorly understood interactions among these separateSactney

et al., 2009. Sitespecificity also makes extrapolation from lab or other field studies inherently
problematic. As such accurately describing the microalgal kinetic growth kinetics remains a

significant challenge.

As already statedhe methods to measuttee microalgal growth kinetics areamly off-line
measurements of parameters that are related to the growttMi@over,some of these
features are cori@ed b the growth rate aftex certain adaptation period tiee experimental
conditions that aresed.Therefore the main objective of this dissertation is the development

of a methodology to measure the microalgal kinetiieg overcoms thesedrawback. This
methodology involves the combined measurement of respirometric and titrimetric data. Such
titrimetric and respirometric measurements were previously used for assessing the kinetics of

activated sludge (Gernaey et al., 2001).

The generated respirometric and titrimetric data was then usedup, setlibrate and validate

a mathematical model dagbing microalgal kinetics. The model implementation was based on
already existing activated sludge models (ASM) (Henze et al., 2000). This makes future
combination of the microalgal model and other waste water treatment models straightforward.
Once a simple model based on a single factor limitation was successfully implemented it was
extended with different environmental conditions limitations. This allowed for model based
optimization of microalgal systems for nutrieetmoval and nutrient recoveny wastewater

treatment.

It should also be emphasized thabmiler to geta feeling forthe microalgal kinetics, it was
chosen to perform the kinetic experineeander autotrophic conditionsthe presence of light.

To this end, batch experiments with defineultues of microalgae species wereagued In

view of (full scale) installations for wastewater treatment other aspects should be considered.
Such as for example the different processes that occur during the night cycle. Also wastewater

streams carcontainloads of organic dissolved matter that can be assimilated by for example

3
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bacteria or microalgae under heterotrophic and mixotrophic conditions. This was however not
in the scope of this research lue veryinteresting aspects to assesfutureresearch.

1.3 Outline

Next to the introduction, objectives and outli@hépter 1), this dissertation consists of four
major parts, namely literature review, simulation methods, a part including all performed
research and a general conclusion and futuisppetive part. A brief description of the several

chapters is given belaw

Chapter 2 is a literature review in which several aspeate treated. At first the different
systems for wastewater treatment in which microalgal biomass is implemented ar&lgikten.
methods used to measure the microalgal kinetics are discussed. This is followed by the different
environmental factors influencing the microalgal growth rate and the different mathematical
equations used to describe the resulting microalgal kinélically some examples of models

are summarized

Chapter 3 provides information about the different simulation methods used during the

research.

Chapter 4 describes the development of a combined respirometric and titrimetric method to
measure the kinetiasf microalgal systems for wastewater treatment. Further a simple model

based on only inorganic carbon limitation was developed and used.

In Chapter 5this methodology was further used to assess the effect of different environmental
factors on the microalgaggrowth rate. Experiments with the respirometric and titrimetric
technigue were performed according to an optimal experimental design scheme. Based on the
experimental results additional kinetic equations for inorganic nitrogen and phosphorus in view

of further modelling were suggested.

Chapter 6 is the implementation of the additional kinetic equations in an extended model

structure. Moreover a parameter identifiability study was performed based on a global
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sensitivity analysis. Based on this, the modeswalibrated and validated by using the
experimental data of Chapter 5.

Chapter 7 describes a model based canmgtive study on intracellular nitrate storage in two
marine microalgae. For thiadditional kinetic equations were developed and experimestal d

generated by batch wise experiments were used.

Chapter 8 involves the implementation of the combined respirometric and titrimetric
methodology on different microalgal strains that were isolated from a waste stabilization pond
in order to assess the laefor of this species when different environmental conditions were
imposed. Specifically, the influence of light and temperature was assessed as these factors were

not further considered in Chapter 5 and 6.

Chapter 9 contains the final conclusions of thissertation combined with opportunities and

perspectives for future research.

The relation between the chapters dealing with investigation is schematically presented in
Figure 1.1. These chapters involve mathematical simulations, experimental work or a

combination of both.
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2.1 Introduction

Algae are considered as one of the oldest life forms of this planet that can reside in either fresh
water, salt water and brackish water environments. The term microalgae refers to all algae that
are too smalto be seen properly without a microscope and they mainly consist of eukaryotic
(microalgae) and prokaryotic (cyanobacteria) microorganisms. The most important common
feature between the eukaryotic and prokaryotic microorganisms is that their growthlis main
based on photosynthetic reactions where available light intensity is converted into energy for
growth (Barsanti and Gualtieri, 2005). Furthermore nutrients are essential such as an inorganic
carbon source, an inorganic nitrogen source (e.g. ammoniuitrate), inorganic phosphorus

source and some trace elements (Juneja et al., 2013).

Next to photosynthesis, respiration and photorespiration are important process$es in t
microalgal growth that occusimultaneously when light is available. These proeesse

schematically presented in Figure 2.1 (Kliphuis et al., 2010)

The photosynthesis involves the fixation of the light energy in the chloroplast with the release
of oxygenand production of adenosinephiosphte (ATP) and nicotinamidéinucleotide
phosphate (NADPH) in order to fix carbahoxide into glyceraldehyde-ghosphate (GAP).

This can then be converted into biomass building blocks.

Respiration mainly takes place in the mitochondria where NADPH is oxidized to generate extra
energy as ATP to gport biomass production and maintenance processes. Dusmgdhess,

oxygen is consumedfaham 1980).

In case of high extracellular oxygen concentrations or low carbon dioxide concentrations,
oxygen is fixated by the oxygenase activity of rubisco withptteeluction of glycolateThis
glycolate isconverted into GAP so it can be-used in biosynthesis. ©process is called
photorespiration and only occurs when th#GD:, ratio exceeds a certain val (Peltier and
Thibault, 1985)
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Figure 2.1: Schematic overview of photosynthesiglark respiration and photorespiration that take place in

the presence of lightKliphuis et al., 2010)

Microalgal growth can occur under different condiomhesecan be autotrophic conditions
while using light and carbon dioxide, heterotrophic conditions while using organic compounds
as energy ah carbon source or mixotrophaonditions while using both light and organic
substrate as energy sources and & orgnic substrate as carbon sources (Mata et al., 2012).
This dissertation will only focus on the autotrophic microalgal conditions, which can be further

used as solid basfor future research with alternative microalgal growth conditions.

2.2 The use of microalgae for wastewater treatment

2.2.1 Introduction

This section mainly focusses on removal of nutrients in wastewater with microalgal biomass.
Many species of microalgae are able to effectively grow in wastewater conditions by their

ability to use abndant inorganic phosphorusdnitrogen in wastewater. More specifically,
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microalgae have been shown to be very efficient in removing these nutrients from sewage based

wastewater either in suspension or in an immobilized form.

Studies reported very higlemoval (>80%) of ammonium, nitrate and total phosphorus from
secondary treated wastewater by various speci€slofellaandScenedesmyPittman et al.,

2011). Also a removal efficiency over 90 % of total nitrogen and 80 % of total phosphorus from
primary settled wastewater was reachedabyicroalgal systencontainingChlorella vulgaris

(Lau et al., 1995). Agricultural wastewater streams are in general derived from manure and
contain higher amounts of nitrogen and phosphorus compared to municipal atastew
Microalgae have also been used for treatment of such streams and this resultedeint effici
removal of these nutrient§loreover benthic freshwater algae suchMgrospora willeana
andRhizoclonium hierglyphicuthat have a higher nutrient uptalkee demonstrated a nutrient

removal similar to the removal of nutrients from municipal wastewbtatty et al., 2001

Although there is significant interest in the use of microalgae for treatment of industrial
wastewater, mostly for the removalsfecific components such as heavy metal pollutants and
organic compounds, some industrial wastewaters have less potential in view of large scale algal
biomass cultivation. This is due to the low content of nitrogen and phosphorus and the presence
of toxins at high level concentrations (Pittman et al., 2011). Nevertheless some use of
microalgae for industrial wastewater treatment has been reported in literature (Pitmann et al.,
2011).

2.2.2 Microalgal reactor systems

There are 4najor configuration systenwgith microalgal biomass or microalgae in combinatio

with bacteria. This includethe open reactor systems, the closed photobioreactor sysiems
waste stabilization ponds (WS&)d the immobilized microalgal systen®pen systems are in
general simpleto conduct and are cheaper. Howewgren systems are more sensitive to
environmental conditions such as light intensity and temperature compared to the closed
systems that allow optimal control with respect to the growth conditions. Therefore the
implementation of these microalgal cultivation system is restricted to tropical and subtropical

regions of low rainfall and low cloud cover (Cai et al., 2013)

10
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2.2.2.1 Open microalgal cultivation system

One of the advantages of an open system is that it cangbemented on large scale and is
rather easy to manage. Moreover it is more durable than large closed photobioreactors (Cai et
al., 2013). In general open systems are carried out in natural or artificisldakends. Open
systems argypically developd as shallow raceway ponds or circular ponds with a rotating arm

to mix the microalgabiomass. The raceway pond (Fig@.€) also known as high rate algae

pond (HRAP) has a meandering configuration with in general paddle wheels to mix the
microalgal biomas. The fresh wastewater is added to the raceway pond in front of the wheels,
whilst the microalgal biomass is harvested behind the paddle wheels. Although these opens
systems are cost effective, they have some disadvantages. Amongst them the faotdkat in

to obtain high microalg biomass yield, a largairfaceareais needed. Ponds areas range from

1 ha to more than 200 ha with an average depth of 20 to 30 cm (Cai et al.,ROft8rmore,

the systems are influenced by water evaporation and dhitnfaddition due to the fact that

these systems can be contaminated by unwanted algal species or algae predators, only few
species are resistant enough in open pond systems. Species that are commonly known to be
cultivated in large open raceway ponde @hlorella spp, Spirulina platensisand Spirulina
maxima(Lee, 2001).

Figure 2.2: High rate algae pond (Octaform).

11
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2.2.2.2 Closed photobioreactor for microalgae cultivation

Closed photobioreactors (Figuze3) usually have better light penetraticttaracteristics than

open pond¢Andersen, 2005which make it possible to sustain high biomass and productivity
with less retention time than is possible in open pohgsical reactor configuration of closed
photobioreactor systems are flat plate reesttubular photobioreactors and bag systems
(Borowitzka, 1999)The flat plate and tubular photobioreactors are designed to allow maximum
light availability and an optimal gas exchange. Moreptrer arrangement of the reactabes

can be changedepending onthe orientation of the sun (Cai et al., 2013)pwever there are

some major drawbacks regarding these systems. They are more complex compared to the open
systems and need a haghenergetic inpuind as such higher operating cdste bag sytems

use large plastic bags with a diameter of 0.5 m fitted with aeration systems. A major drawback
of the bag systems is the inadequate mixing, wbathinduce system failure (Cai et al., 2013)

Figure 2.3 Tubular closed photobioreactor (Chempur Tecmologies)

2.2.2.3 Immobilized algal systems

Due to the fact thahe size of microalgal cells is very small and the cultures are usually quite
diluted, harvesting or separatittgemfrom the treated wastewater or culture medium is a major
drawback for d@ill scale implementation. In general, the harvesting methods include chemical,
biological, electrical and mechanical techniques with a high consumption of energy or dosed

12
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chemials (Cai et al.,, 2013). One way overcome this drawback is the immobilization of
microalgae, which prevesithe microalgae from moving freely within the systd#doffmann

(1998) reported higher removal rates with immobilized systems comparsdspended
systems. This could kexplaired by the fact thato washout of the microalgal biomasscurs

In addition it is easier to control the microalgal biomass as washout of the cultivated species is
avoided or minimized. Furtherore the effluent is celfree and can be resed for other
purposes (Hoffmann, 1998As reported in literature, most research on immobilizext@aigal
systems is conducted laboratory scale and entrapment is the most frequently immobilization
technique used for these experimefitee cells are confined in a tleeimensional maix, but

can move freely within their compartment The matrix material is in general a synthetic

(polyvinyl, acrylamide) or natural polymer (collagen, cellulose) (Cai et al., 2013).

2.2.2.4\Waste stabilization ponds

Waste stabilization pals (WSP) are a series of large, shallow basins treating raw wastewater
through natural processes involving bacteria and algae. They are used to treat different kinds of
wastewater, ranging from industrial wastewater to municipal wastewater. The mogaimpor
advantage of this type of treatment is the simplicity in construction and operation (Alvarado,
2013).

The use of WSPs is one of the most ad#tctive methods for treating domestic and industrial
waste water, because sunlight is the only energy mragent for its operation (unless aeration

is applied). This in contrast to conventional aerobic wastewater treatment, in which mechanical
aeration accounts for approximately &of the energy consumption (Tchobanoglous et al.,
2003). Moreover, WSPs imprevenergy efficiency through the use of algae for oxygen
production. With this kind of wastewater treatment systems, typically Biological Oxygen
Demand (BOD) removal efficiencies up to 80 % can be achieved. In addition, treatment through
the use of WSPs pvales removal of pathogens compared to other treatment systems
(Kayombo et al., 2004). Considering total nitrogen, net removal efficiencies as high as 80 %
have been reported. This removal has been attributed to the assimilation of inorganic nitrogen
by microalgal bomass, sedimentation and volatibn of ammonia gas from the pond surface
(Ferrara and Avci, 1982). For total phosphorus net removal efficiencies of 50 % have been

13
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reported, mainly by sedimentation and assimilation by the microalgal bionsadisgan the

system.

Since WSP technology highly deps on photosynthetic activity,large surface exposed to

solar energy is needed and as such high landisnesyuired. Moreover becaubelogical
reactions are influenced by the prevailing tempeeatW SP treatment systems dependhe

climate ¥on Sperling, 2007). All this implies that WSP treatment is more suitable in cases
where land is inexpensive, climate is favorable, a low energy cost is wanted and no special
training of the operators desired (Arceivala, 1981). Therefore, WSPs are appropriate fer low
income tropical countries. However, there are thousands of WSPs in Europe as well and one
third of the treatment plants in the USA are WSPs (Alvarado, 2013).

In Figure 2.4a schematic corduration ofa WSP is illustrated. In generat consists of a
combination of facultative and maturation ponds where aerobic or anaerobic lagoons can be

added for pretreatment purpos@svarado, 2013

Facultative ponds are the most common in pond tredtriiée bottom layers of such ponds
are anaerobic with similar characteristics as anaerobic ponds. The upper layer is oxygenated
due to the presence of a high concentration of algae, which produce oxygen through

photosynthesisMon Sperling, 2007).

Thephotosynthetic activity depends on the availability of light. As such, with increasing depth
the oxygen production will decrease due to the lack of light penetration. Furthermore,
photosynthesis does not take place during the night and the absence afaygeevail\{on
Sperling, 2007).

Maturation ponds usually follow treatment in the facultative pond and serve as a tertiary
treatment. Their primary function is to remove pathogens and they can also achieve a significant

amount of nutrient removal (Shoh, 2005).

14
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Figure 2.4: Schematic repregntation of a WSP (Alvarado, 2013

2.3 Methods to measure microalgal kinetics

2.3.1 Introduction

In view of microalgal system optimization it is essential to have insight in the kinetics related

to the microalgal growth. Thiatter can be measured as an increase of biomass in the algal
culture or it can also be measured with a surrogate parametdr ishpcoportional to cell

amount (Andersen, 2005). Measuring an increase in biomass or a related surrogate parameter
in general gives insight in the microalgal growth rate. However, it is not evident to determine

other biokinetic parameters such as forregke half saturation coefficients for nutrients.

With respect to the experimental sgt used, in general two methods can be distinguished,

namely bymeans otontinuous cultures or batch cultures.
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2.3.2 Continuous cultures

In continuous cultures, aesh supplyf wastewaters added to the culture at the same rate at
which it is withdrawn. This allows the culture to remain in the exponential growth phase. Here
the steady state concentration of the algae is determined by either a limiting nutbgrd or
certain dilution rate that is implemented to maintain the cell concentration constant in the

culture. In this case the specifiogrth rate can be calculated as
t - ©O (2.2)

With "O(m? d?) the flowrate of the medium anol(m3) the reactor voluméO (d?) represents

the dilution rate. In this equation no microalgal decay is included since the assumpitaateis

that the microalgal growth rate is much higher than the decay rate. Howesvasghmption

only stands if the microalgae did not suffer physiological stress from the environment during
the experimentAndersen, 2006 Furthermorewhen using continugs cultures to determine

the microalgal growth rate, a uniform mixing in the reactor is assumed. However this is an

assumption that is difficult to maintain (in larger reactors).

2.3.3 Batch cultures

Compared to continuous cultures where the specifiertroate is determined by the dilution

rate, in case of batch cultures a time series of measurements is needed to assess the rate of
change in biomass (amount of cellBe specific growth rate can be calculatedjbgintifying

the increasin numberof cdls withina certain time intervall he latter time intervak defined

by the beginning and end of the logarithmiowth rate during a bataxperiment (Binaghi et

al., 2003).The growth rate can then be calculated as:

t —5— (2.2)

With 0 andl the cell number at the start andlie end of the logarithmic phase of the growth

experimentYois the time interval of the experiment.
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Instead of assessing the change in cell number also other parameters can be measured that are
related to the biomass concentration. Typical proxy measurements are organic particula
matter,by e.g. in vivo fluoresence,optical densityor volatile suspended solidélso the
amount of chlorophyll,carotenoids, proteins, lipids or carbohydratese used as proxy
measurementiowever only if these methods are lingaorrelated to cell number or biomass.

The latter is a major drawback of these proxy measurements. Hence for many paraiseters it
essential to know under whighnowth conditions these parameters are liiyezorrelated to cell
number or biomass and whatahe detection ranges. As such prior experiments need to be
conducted to verify if there is an existing linear relationship. Wingard et al. (200X&ople
demonstrated the ndmearity between in vivo fluorescence and cell number at high cell
densites. This was probably due to changefluorescence yield by micatgal selishading.
Furthermore under each growth condition the relation between parameters with respect to
cellular content and cell number or biomass is variable during a certainrtimseacclimation

time can last for 20 or more generations (Andersen, 2605her due to the photosynthetic
activity of the microalgae it is necessary to devise a sampling strategy that takes into account
the difference between light period and darkigueto minimize the scatter in the time series

measurements (Andersen, 2005).

2.3.4 Respirometry and titrimetry

2.3.4.1 Respirometry

Respirometry is a weknown technique to measure the kinetics of activated sludge and
composition ofwastewaterlt involves the measurement and interpretation of the respiration
rate of activated sludge when specific experimental conditions are implemented. It is expressed
as the amount of oxygen that is consumed by activated sludge per unit of volume and per unit
of time. The obtained respirometric data is directly related to the growth rate of the micro
organisms residing in activated sludge and the corresponding substrate consumption. For this it
is generally known as a very accurate method to measure thecioétactivated sludge
(Cavaho et al., 2001).
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The basic measuremeptinciples for respirometry depend on two major criteria, namely in
which phase the oxygen concentration is measured (gas phase or liquid phase) and whether a

static or flowing regime fothe gas phase or liquid phase is used (Gernaey et al., 2001)

A respirometric setip that is often used, is a batch wise reactor with constant voluthe an
continuous aeratigralso known as a flowing gasatic liquid respirometer (Gernaey et al.,
2001).The respiration rate of the activated sludge is calculated by making a mass balance of
oxygen in the liquid pase. In case of a flowing gatatic liquid respirometer this mass balance
(Equation(2.3)) consists of two terms, namely an oxygen transfer(@ieR) due to aeration

and an oxygen uptake rate (OUR) due to respiration of activated sludge (Gernaey et al., 2001)
— 0YYOTYY (2.3)

The OTR (g @ m3d?) is defined by the oxygen mass transfer between the liquid an gas phase
(O & (db and the difference between the dissolved exygoncentration at saturation
(g O m) and the prevailing dissolved oxygen centration in the liquid phase (g O, m3)

and can be denoted as:
0"YY 0O ®O 0 (2.4)

Moreover the value of the oxygen mass transfer coefficient depends on several factors such as
for example temperature, operational condsgi@and geometry of the reaci{@arciaOchoa

and Gomez, 2009). Even the biomass concentration and the nmaatiyposition present in the
reactor influence tse parameters. This was also observed when performing the experimental

runs.

Considering the biological processes that influence the dissolved oxygen concentration in the
liquid phase, it should be noted thfa¢ metabolism of microalgal biomass is different compared

to the metabolism of bacteria in activated sludge. Microalgae produce oxygen through
photosynthetic activity by using an inorganic carbon source and nutrients with abundant light
intensity. As suls, the OUR term changes sign and becomes an oxygen production rate (OPR)
term. Given the similarities, the determination of microalgae kinetics from OPR curves, in
analogy with bacterial respirometry experiments, is an elegant method to measure microalgae
kinetics.Since the features of the dissolved oxygen are related to the gross microalgae oxygen
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productionthe oxygen respiration to sustaetpopulation is included. Thishewevera small
percentageompared to the oxygen production due to photogymtlactivity (Kliphuis, 2010).

The use of respirometry to assess the effect of certain environmental factors is already reported
in literature. For example Hancke et al. (2008ompared the use of oxygen measurements
with pulseamplitudemodulated fluorscence(PAM) and '4C assimilation measurements to
determine the effect of temperature on the photosynthetic activity in different monocultures of
marine phytoplankton. These three methods were compared because they measure the
photosynthetic pathwagifferently and as such generate different responses on environmental
variables. The oxygen level was monitored with a malextrode. Further Li et g2003) used

online dissolved oxygen measurements for online state estimat@uneélla salinacultures

grown in a stirredank photobioreactor. With this they successfully implemented a method to

improve the operatial process control in the photobioreactor.

2.3.1.2 Titrimetry

Next to respirometry, measurements of titrimetry are used to obtain infornsdteurt the
biological processes in activated sludge. More specific the pH value of a biological system is
influenced by the biological reactions which take place. In case of wastewater treatment systems
with activated sludge several biological reactionshsag nitrification, denitrification and the
degradation of organic carbon source influence the pH (Gernaey, 2001). Forthethee pH

is influenced by thestripping of for example carbon dioxide. However changes in pH in the
liquid phase by biological redons are difficult to observe due to the presence of several
acid-base buffer systems with pH depending buffer capacity (Stumm and Morgan, 1996). This
makes accurate calculation of the consumed or released protons difficult. Thus by controlling
the pH at a certain level through acid and base addition, the rate of proton consumption or

production due to biological reactions can be provided (Gernaey et al.,2001).

With respect to microalgal growth also changes in the value of pH by biological reaateon
induced. Indeed, according to Stumm and Morgan (1996) the photosym#aetions can be
denoted as:

pTiPl pc@QO pd0 pP OW P & O O O 0O polwp (2.5)
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POV pdU pPUv pctO ™OOOP &6 O O 0O 0 poip (2.6)

As can be deducted, the photosynthetic activity leads to an increase of pH in the liquid phase.
Further it should be noted that when bicarbonate is used as inorganic carbon source, more

protons are consumed compared to when carbon dioxide is used.

Anotheraspect that influences the pH of the liquid phase during microalgal monitoring is the

chemical equilibrium of inorganic carbon.i$ltan simplified be denoted as:

60 ™O0P 0060 P O O (2.7)
with 0 V60— pm

O60P 60 O (2.8)
With 0 00 —— pm

When inorganic carbon is used for microalgal growth, this chemical equilibrium will be

disturbed resulting in proton production or proton consumption.

The rate atvhich CQ is transferred between the liquid phase and gas phase depends on the
saturated C@concentration and the mass transfer coefficient fog, @@ich can be calculated
from the mass transfer coefficient for. @ultiplied with a reduction factor basemh the

diffusivity (Alex et al., 2010; Sin, 2004). The G@ransfer rate”( (g m3d?) can be

calculated as

; 0O QQ Y Y (2.9)

Wherei QQ —_— (2.10)

With 'O the dffusion coefficient of oxygen in water arld the diffusion coefficient of
carbon dioxide in water, respectively 1.654@° d* and 1.73 16m3 d! (Sin,2004)."Y is
the saturation concentration (grand"Y the concentration of carbon dioxide in the solution

(g m3). Moreover the saturation conceitra on i s governed by Henryos

Yooof 0 (2.19)
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In this equationd (g m atni!) represents the Henry coefficient for carbon dioxide and
n (atm) the partial pressure of carbon dioxide in the gas phase. The saturation concentration
of carbon dioxide in air attamperature of 298 K and atmospheric pressure is 0.32 gvinen

carbon dioxide gas is used as sparging gas with 2 % volumetric carbon dioxide concentration,

the saturation concentration becomes 32%g m

The above mentioned effects result in a titrinediackground signal, i.e. the background signal
addition rate (BSAR) (Sin et al., 2006). The amount of protons consumed by this BSAR needs
to be corrected for when calculating the net proton addition rate due to carbon dioxide
consumption by microalgaedi, proton addition rate or HAR). This can be clearly observed in
Figure 2.5. The first part of the curve (be
carbon dioxide is consumed by microalgae, whereas the second part is only due to the BSAR.
The sbpe obtained from the first part of the curve represents the total rate of proton addition

(TPAR), including the BSAR. The latter can be determined from the second part of the curve.
Subtracting this from th€PAR yields the HAR.

Proton addition

Time (d)

Figure 2.5: Typical titrigra m for microalgal growth with indication of TPAR and BSAR.

Combining titrimetric data with respirometric data would allow to understangithegical
processes that take place more acclya@ertain processes that cannot be observed by one

specific data set could be explained by the other one. In Table 2.1 different processes in case of

microalgal growh and which datatype they wilffact are summariz

21



Chapter 2

Table 2.1 Influence of different processes on specific datgpe

Data Respirometric Titrimetric
O production Proton addition
by photosynthetic by photosynthetic
activity activity
PROCES Stripping CQ
Respiration Chemical equilibium

inorganic carbon

2.3.5 Conclusios

Compared to batckexperiments to measure the microalgal kinetics, the major drawback of
continuous systems is the fabatthe microalgal cultures should be kept in the exponential
growth phase. As such it is not possible to determine the kinetics when certain stress conditions
(for example light intensity) are implemented. This makes this method not suitable in view of

mimicking the natural environment.

Considering the masurements used in batkperiments, in general proxy measurements are
used. However the features of this proxy measurements are not always correlated to the
microalgal kinetics. When different conditiong éamposed, madaption period is needed before

the featuresan bedirectly related to the kinetics.

Thereforejt was chosen to use the combined respirometric and titrimetric methodology in the
dissertation to determine the microalgal kinetics. Thiska@vn methodology proven to be
easy and accurate to measure the kinetics of activated sludge and can now be transferred to

measure the kinetics of microalgae.
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2.4 Factors influencing the microalgal growth rate

2.4.1. Introduction

For successful treattent of wastewater with microalgal biomass, a thorough knowledge of the
various parameters that effect the microalgal growth and as such thm sf§iciency is a

prerequisite

These various parameters can be respectively physical, chemical and bliédatica. Abiotic

factors such as light intensity and temperature are the most important parameters affecting the
microalgal growth. Examples of chemical factors are the availability of nutrients (nitrogen and
phosphorous) and inorganic carbon sourceldgioal factors can be the competition between
microalgal species residing in the system. In addition operational factorsssmetiray, reactor
configuration the rate of dilution and harvesting frequency can affect the microalgal growth
rate.

2.4.2 Light intensity

The availability of light is essential for microalgal growth. Figure 2.6 illustrates the effect of

light intensity on the photosynthetic activity of algae.

With light intensities lower thathe light compensation pointJ respiationoccurs and there

is no grosoxygen production. Once this point is padsthe oxygen production is higher than
the respirationThe initial slope of the curve represents the maximal efficiency of growth in
response to light. A maximal growth rate is achieved bgrtain light intensityQ. As such,

the light intensity is no longer limiting the overall photosynthesis. Abbedight saturation
point, the lightdependent reactions are producing more ATP (adenbsimghosphate) and
NADPH (Nicotinamide adenine dinucleotide phosphate) than can be used by the light
independent reactions for G@xation and the availability o£ O, becomes the limiting factor.

A further increase in light intensity will not result in a further increase in growth rate, but may
even cause damage to the photosynthetic complex, which results ininpimtmn.

Photanhibition mainly occurs in the ettron transfer chain located ahgbosystem II. Its

23



Chapter 2

mechanisms directly related to protein damage that is responsible for the electron transfer at
the photosystem Il. As such the production of ATP is interrupthts causes a decrease in

growth rate ad can even lead to cell death (Richmond, 2004

The light energy is converted into chemical energy by photosynthetic activity, however large
parts are lost as he It has been reported foutdoor microalgal ponds that more than 90 % of
the total incidensolar energy is converted into heat and only less than ) dnverted in

chemical energy.

ynthetic rate (P

Photos

Figure 2.6: Light r espons curve Richmond, 2004.

2.4.3 Temperature

Next to light, temperature is the most import&utor influencing microalgal growth in nen
nutrient limiting conditionsMufioz et al(2004) and Bordel et al. (2009) reported that higher
growth rates with increasing temperatures could be observed. This could be explained by the
fact that augmentatioof temperature shifts the light saturation point to higher light intensities
and as such also the intensity at which phtibition occurs. This was observed by Sorokin

and Krauss (1962) faZhlorella pyrenoidosaEach temperature seemed to have a spdigjfit
intensity at which maximum growth rate was reached. For example, at a temperature of 15 °C
light intensity at which photohibition occurred, equaled 242 pE“ns?, while at 20 °C
photoinhibition only occurred at 484 pE4s? (Sorokin and Krauss962)
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Furthermore, the microal gal growth as funct.i
Hoff rule that stipulates thatiddogical reaction rates doubfer each temperature incredsg

10 °C. This is due to the fact that the temperainftaences the activation energy needed for
biological reactions. However, this rule can only be validated in a narrow temperature range
(Goldman, 1974; Henze et al., 2000). Once a certain temperature level has been exceeded,
essential proteins are damaget! the growth rate decreases. In Figure 2.7 the growth rate of

four different microalgal species is illustrated. As can be seen, the optimal temperature for
growth depends on species. This can be explained by difference in cell size and in the difference

in photosynthetic pigments concentration within the cells (Eppley and Sloan, 1966).
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Figure 2.7: Microalgal growth rate as function of temperature for four different microalgal species (Ras et
al., 2013)

2.4.4 Inorganic carbon

Inorganic carbon, morepecifically carbon dioxide and bicarbonate are the most important
nutrients for microalgal growth. Microalgae biomass contains approximateéty 60carbon
on a dry weight basis. Some microalgal species are only able to assimilate either one of the
mentianed inorganic carbon sources (Moss, 1973). Other species can use both inorganic carbon
sources, however with a preferential uptake of carbon dioxide compared to bicarbonate.
Moroney and Somanchi (1999) explained that this preferential uptake is duddct tthat the
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carbon dioxide molecule is smaller and as such the diffusion into the microalgal cell occurs
faster. Accordingo Van den Hende et al. (2012) the main reason for this preferential uptake of

carbon dioxide is that carbon dioxide is zero vadlowing an uptake by the cell without the
need of active transporters.

Furthermore the pH of the aquatic environment determines the concentration of different
inorganic carbon species present in the water. At values of pH <r6.86=(6.36) the most
dominant inorganic carbon source is carbon dioxide, while at values of pH higmer th

pH = 10.33 ) U = 10.33) almost all inorganic carb@nevailsas carbonate (Reichert et al.,
2001)

In Figure 2.8 the relative amount of the different inorganic species as function of the pH and
certain temperature of the aqueous phase is illustrated.
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Figure 2.8 Relative amount of inorganic carbon species as function of the pH of the aqueopbkase
(LAWR, 2013).
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2.4.5 Inorganic nitrogen and inorganic phosphorus

Nitrogen ad phosphorus are the most abundant nusientenvironmental water systems.
These two nutrients play a major role in the cell metabolism since they are a part of several

biochemical processes.

2.4.5.1 Inorganic nitrogen

Ammonium and nitrate are the most important sources of inorganic nitrogemdealgal
growth. These molecules are synthesized into glutamine which is needed for the production of
more complex molecules as mentioned before. FurtBehuler et al. (1952%tated that
ammonium is preferred to nitrate by green microalgae. Furtheyrmganobacteria and diatoms

are not able to assimilate ammonium. The uptake of nitrate is inhibited when both nitrogen
speciesare present in the environmerBréekhuizenet al, 2012) and the ammonium
concentration is at high levélhis can be explainkby the different way of assimilation of both
inorganic nitrogen sources. Ammonium is intracellylaynthesized into glutamine, while in

case of nitrate, a prior reduction by respectively nitrate reductase and nitrite reductase is needed
where the nitree is converted into ammonium before assimilation (Flynn et al., 1997). This
extra reduction requires more energy, respectively 385 k3 amad as such ammonium is
preferred compared to nitrate for microalgal growth (Bienfd®g5). Therefore wastewater
streams with high ammonium concentrations can be effectively used to rapidly grow
microalgae. In contrast excess of ammonium can have a growth inhibiting effect. The
ammonium tolerance of different algae species varies from 0.22 g td 4 g m® (Collos et

al., 2004).

Next to inorganic nitrogen assimilation, certain microalgal species have the capacity of
intracellular nitrate storage. In marine ecosystems specific microalgae occur that have the
capacity to store nitrate intracellularly in transitoryapiasmic pools in concentrations up to
several grams per liter of nitrogen (Bode et al., 1997; Dortch et al., 1984; Kamp et al., 2011,
Lomas and Glibert, 2000; Needoba and Harrison, 2004). With nitrogen limited conditions, the

intracellular nitrate is redied and used as nitrogen source for growth.
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2.4.5.2 Inorganic phosphorus

Concerning the assimilation of phosphorus only the uptake of inorganic phosphorus will be
considered in this dissertation. Inorganic phosphorus has a significant role in miccedllgal
growth and metabolism. It is preferably taken up in the form #Q@f or HPQ? and is
converted into organic compounds by phosphorylation. Then these organic compounds are
involved in the production of ATP from adenosine di phosphate (ADP) accoaadayia form

of energy input, sucaslight, by oxidation of respatory substrates or by the electron transport

in mitochondria.

The growth rate of algae on phosphorus is more dependent on the internal cellular
concentrations than on the extermplantities (Richmond, 2004). However, this was not
considered in this dissertation because of the used experimental features. In literature,
experimental results have proved thatt&ved cells could attain much higher nutrientlpt

rates than saturateellsand may uptake phosphate Gyl8 times the minimum cetjuota in
phosphate repletion medium, which were stored as polyphosphate bodies (internal P pool) and
could sustain 3l generations of growth in phosphatepletel conditions theoretically (Yaet

al., 2010).

Furthermore phosphorus uptake may be affected by other phosphorus pools on microalgal cells
caused by phghorus adsorption. According to Yao et al. (2018);70 % of the total
phosphorus content in different microalgal speciesadge upy cell surface adsorption. This

indicates that the kinetics of phosphorus inesla two stage kinetic process.

2.4.5.3 Microalgal species dependent nutrient removal

Next to influencing the microalgal growth kinetics, nitrogen and phosphorus areralseece
from the liquid phase.

The nutrient removal efficiency of microalgal systems can depend on the microalgal species

used. In Table 2.2 the removal efficiencies for nitrogen and phosphorus with different
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microalgal species (chlorophytes, cyanobactenh diatoms) in casef different wastewater
streams are summarized. It should also be stressed that in case of simultaneous uptake of
nitrogen and phosphorus, the optimal N/P ratio varies among cultures due to different metabolic
pathways within species.oBola et al. (2007) reported an optimal N/P ratio of 7/1 (w/w) for
Chlorella vulgariswhich is similar to the molar N/P ratio of 16/1 as described by Stumm and
Morgan (1996). Considering the chloroph$igenedesmus §hee (1978) reported a N/P ratio

of 30/1 (w/w) is needed to grow without nutrient limitation. When this microalgal species was
cultivated in an environment with N/P ratios between 12 téM®) it was nitrogen limited,

which caused an increased use of the internal phosphate pool. Thus the dissolved nitrogen

removal was always higher than the dissolved phosphorus removal.

Table 2.2 Nutrient removal in case of different microalgal species and different wastewater strean(€ai et

al., 2013)
Category Specie Wastewater Total N Total P
Initial Removal Initial Removal
g n % g %
C.
Chlorophyte pyreonidosa Industrial 267 87-89 56 70
C.vulgaris  Atrtificial 13410 23100 23100 46-94
C.vulgaris  Industrial 20 3095 112 2055
C.vulgaris  Municipal 481150 5588 25 12-100
C.
reinhardtii Artificial 129 42-83 120 1314
S.obliquus  Municipal 27 79100 12 47-98
Cyanobacteria A.platensis Industrial 3 96-100 18-21 87-99
Oscillatoria
sp. Municipal 498 100 76 100
P.
Diatoms tricornutum  Municipal 498835 80100 76-116 50-100

2.4.6 Acidity of the environment

The pH of the medium in which microalgae are cultured is very important because it affects the
solubility and availability of carbon dioxidend other essential nutrienkdoreover the pH has
a significant impact on the microalgal metabolism. Most micedagecies grow maximally

around neutral pH values-{Z6) (Juneja et al., 2013).
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At higher pH, the inorganic carbon is available in form of carbonates and as such suppresses
the microalgal growth. Also, alkaline pH, where the external pH is higher thantémnal pH,
increases the flexibility of the cell wall of mother cells. This means that rupture of the cell wall
will be prevented and the release of autospores will be inhibited. Thus the time for cell cycle
completion will be increased (Juneja et 2013). Akin to alkaline pH, low pH conditions can
affect the nutrient uptake or induce metal toxicity which will affect the microalgal growth
(Juneja et al., 2013)

However some microalgal species have tolerance to high or low pH levels. For example
Spirdina platensishas tolerance for high pH values (pt®), whilstChlorococcum littoralas

an example of microalgal species that has tolerance for low pH valuesA(pfAlsyah, 2012).

2.4.7 Salinity of the environment

High salinity levels have a negati\effect on several stages of the biochemical pathway for
photosynthetic activity Sabh et al., 1983). Therefore the salinity of the reactor in which
cultivation is conducted should be adapted to the level of salinity of the natural environment in
which the microalgae are residing (Kaplanal.,1986). Although microalgae have developed
the possibility to adapt to a wide range of salinity levels, their growth is inhibited when the
salinity exceedghe concentration of 200 mM (%t et al., 1983). Howevehis growth
inhibition depends on microalgal specig&sis is illustrated in Fig 2.&here an augmentation

of salinity from 100" 200 uM @used a decrease of 50 Ygofwth in case oEhlorella vulgaris
compared to 406 in case oChlorococcum humicottgAbdetRahman et al., 2005)

o W_(Zb_lqr_m:occum humicola ) Chlorella vulgaris
i 0.7 5 po—

05{ -= 50 mM
—— 100 mM
X 150 mM
=0~ 200 mM
-4 250 mM

e e
w =

Optical Denisty

N

01

o 1L 2 3 4 5 6 7 8 % 10 0131316
Time (Days)

Figure 2.9 Influence of salinity, expressed a NaCl on the growth in case ofChlorococcum humicottaand
Chlorella vulgaris(Abdel-Rahman et al., 2005)
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2.5 Kinetic modelling of the microalgal growth rate

Several models for algal growth modellihgve beerdescribed in literature. Some of the
models take into account only limitation of one factor, for example light intensity (Cornet et
al., 1995;Molina Grima et al 1999; Martinez et al.,1990gbanna etlg 1995 Yeh et al.,

2010) and inorganic carbon (Hsueh et al., 2009; Goldman #93a#% Tang et al 2011, Nouals,

2000). A basic assumption governing the use of these kinetic models related to a single factor
is that microalgal growth rate soletlepends on this factor. Their applicability is thereby
restricted to describe the response of growth to a specific range of environmental conditions
such as natural waters. Furthermore a simplified model based on one single factor permits no

consideratiorof possible interdependency between different factors.

Somemodels are based on-timitation. For example ctimitation by light intensity and
inorganic carbon (Filali et al.,2011),-timitation by nitrogen and phosphorus (Bougaran et al.,

2010) and cdimitation of light and temperature (Bernard and Rémond, 2012).

Next to describing the microalgal growth based on one or multiple factors, tyor ma
approaches can be distinguish@he assumption with Monod kinetics is that the microalgal
growth is not Imited by high concentrations of nutrients, high temperature or high light
intensities (Monod, 1940)his assumption seems however not trustisorFor example at
certain temperature, denaturation of proteins can occur causing microalgal decay. This
compaed to the assumption that microalgal growth is inhibited by for example high nutrient
concentration, certain temperature or level of light intensity at which photoinhibition occurs.
Such models seem to be albedescribemore accuratg natural systemsnladdition also
models are developed to describe the microalgal growth taking into account interactions
between different factors, for exampight intensity and temperatu(€arvalho and Malcata
2003.

Other authors developed detailed metabolic mobglac®ounting for all available, yestill
partial knowledge about the metabolic pathways of specific microalgal species (Cogne et al.,
2011).

Furthemore biokinetic equations describirige microalgal growth havalsobeencombined
with hydrodynamic mdels in view of modelling fullscale installations for wastewater
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treatment systems. Alvarado (2013) combined a hydrodynamic model based upon the
compartmental model approach with two different complete biokinetic models (Alex et al.,
2010;Sah et al., 20D1o describe the system performance of a maturation péred.€Bults of

that research indicated good similarities between predicted and experimental values with
respect to chemical oxygen demand removal. Howether biomass concentration was
predicted ésimilar by both biokinetic models, suggesting that default parameter values or

processes needed to be reconsidered.

Beran and Kargi (2004) also used the combination of a biokinectic nvatiela two
dimensional hydrodynamimodel for predicting the efient quality of a facultative pond in a
WSP in terms of microalgal and bacterial biomass, nutrient concensatial chemical oxygen
demandDifferent experimental results taken at different tawas in the pond were used for
model calibration. The redsl of that research confirmed the need of introducing the two
dimensional hydrodynamimodel to obtain good similarities between model predictions and

experimental values.

The different modelling approaches mentioned implemented on the factors influémeing

microalgal growth rate will be discussed below.

2.5.1 Maximum specific growth rate

The knowledge of microalgal growth rate is essential to control the efficiency of the wastewater
treatment and removal of nutrients. Furthermore it is interestimgalee a selection of the
microalgae with highest growth rates for the valorization of biomass and/or nutrient
recuperation. It should be noted that, the growth rate depends on the metabolism and availability
of nutrients, on the operating conditions praddoy the system under operation, and on the
produced biomass foneé effective nutrient removadiAata et al., 2012). In Table 2.3 maximum
specific growth rates of different microalgal species are summarized with their residing
environment and prevailingmperature. Most of the data obtained are in the temperature range
between 15 30 °C for both marine microalgae and freshwater microalgae. Minor diffexence
between thef for freshwater and marine algae, respectively 1.59.82 d' and

1.19 +0.46 d* in this tempeature range could be observed.
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Table 2.3 Maximum specific growth rates of different microalgal (marine and fresh water) species

\zg_lll;e °C Algae fresh/marine References
2.1 20 Chlorellavulgaris F Gutzeit, 2006
25 20 algal ponds X Alex et al., 2010
3.26 20 Pseudocgé)orococcur F Packer, 2011

Nannochloropsis M Quinn 2011

0.6 23

oculata

Broekhuizen et
0.9 20 Algal ponds X al, 2012
1.92 25 Chlorella vulgaris F Filali, 2011
1.3 30 Chlorella vulgaris F Dauta et al., 199(
0.58 25 Fragllarla. F Dauta et al., 199C
crotonensis

0.77 27 Staurastrum pingue F Dauta et al., 199C
1.32 32 Syne_chocystls F Dauta et al., 199C

minima

. Bernard and
04 1.8 Asterionella formosa F Rémond2012
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Table 2.3 Maximum specific growth rates of different microalgal (marine and fresh water) species

(continued)

\zg_llt;e °C Algae fresh/marine References
165 20 Asterionella Bernard and Rémond
formosa 2012
134 o5 Asterionella Bernard and Rémond
formosa 2012
0 30 Asterionella Bernard and Rémond
formosa 2012
Chlorella Sorokin and Krauss
1.e8 377 pyrenoidosa 1962
5 38.7 Chlorella Sorokin and Krauss
) pyrenoidosa 1962
Chlorella Sorokin and Krauss
215 39.6 pyrenoidosa 1962
1.68 27 Selgnastrum Bourgaran et al., 2010
minutum
Isochrysis
1.5 27 affinis Bourgaran et al., 2010
galbana
1.55 25 Chlorel.la Concas et al., 2012
vulgaris
1.36 19  Chlorella Goldman 1974
pyrenoidosa
Asterionella Bernard and Rémonc
0.65 5 formosa 2012
0.8 78 Asterionella Bernard and Rémonc
formosa 2012
108 10.7 Asterionella Bernard and Rémonc
formosa 2012
Asterionella Bernard and Rémonc
145 13.75 Formosa 2012
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2.5.2. Modelling of microalgal processes

Dochain et al. (2003) modelled the influence of the microalgae present in the system from the

following considerations:

Microalgal growth6 60 Y ———>  ® 0

Microalgal respirationt. @® —> @ 0 0

Microalgal decayddo  —> Y (2.12

In these reactions the microalgae are representéd byg DW n®) which usesoluble influent
substrate (g M) (soluble nitrogen and phosphoras)d CQ (g m®) for growth. Their decay

leads to soluble substraté (g ni3).

In general thespecific microalgal grwth rate” (g DW n®d™Y) can be denoted as

" t ) (2.13
With t the maximum specific growth rate{d

From these considerations the dynamical mass balance equdtibasatyaebased processes

can be deduced:

— 1 ® o O (2.19
— Ot W 0o Y Y ANOIA (2.15
— 0t O 0o Y ©wQ O (2.16)
— Ot (2.17
— 0 O (2.19

In these quations the microalgal decay rate is represented byd?), 0 & (d1) and0 &
(d}) are the mass transfer coefficients between aqueous phase and gas phase for carbon dioxide

and oxygen respectively. A microalgal respiration function is denotedCby. Y

(g CO m?3 and"Y (g O: m3) arethe concentrations of carbon dioxide and oxygen at
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saturation, whilstY (g CQ: m®) and"Y (g mi®) represent the dissolved concentration of

carbon dioxideandoxygen. The yield coefficients are denotedoawith i = 1 to 6.

A classcal way todescribe the growtkinetics is the Monod modéMonod, 1949) This
approach assumes a constant yield for nutrients where substrate utilization rate changes
proportionally with the organisms growth rate. While a constant yield may be assumed for
carbon, itmay not be valid for nutrients such as nitrogen and phosphorus. Asusiroi this

model could provenadequate to explain the microalgal growth kinetics (Palabhanvi,et al
2014). This drawback could be overcome by segregating the overall cgefticient for
nitrogen and phosphorus in a variable fraction andravariable fraction. The newariable

fraction corresponds to the minimum vyield coefficient which is achieved when extracellular
nutrient concentration tends to zero, whereas the Varigibld coefficientdependson the

extracellular nutrient concentration that changes in time (Palabhanvi et al., 2014).

Since the microalgal growth is often limited by different factors such as light intensity,
availability of nutrients and temperaturéstshould be taken into account in the model. For this
the specific growth raté  of organisms is generally modelled by multiplying the maximum
growth ratet with some limiting factors™(Q) (Kayombo et al., 2000)These limiting
functions wil be discussed in the following sections. Further taking into account nutrients will

have as consequence that dynamic mass balances for these components are additionally needed.

» B QO (2.19

2.5.3. Kinetic models with one factor

2.5.3.1 Kinetic models related to light intensity

There can be several approaches distinguishedstide the growth rate as function of light
or radiation intensity. The most simplistic way to describe the availabfliight is a nodified
Monod relationship (2.20without taking into account light inhibition (Kayambo et al., 2000;
Lee and Shen, 2008ordel et al., 2009; Sasi et al.; 2011). In this equation, the prevailing field

light intensity is denoted bYO(UE m? s), 0 represents the half saturation coefficient
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(LE m? s1) which corresponds to it light intensityrequiredto reachhalf of the maximum
specific growth rate. In literature often instead of light intensity, irradiation is mentioned

expressed as W Aor as lux, depending on which type of sensor is used to quantify light.
Q0 — (2.20

In more recent models, the effect of light saturation at low intensities and inhibition at high
intensities can be described by a Haldegeation (Keesman and Stichter, 2003). The Haldane
model was initially developed for growth on nutrients to overcome the drawback of Monod
kinetics, namely the fact that there is no inhibition included at high substrate level. The model
implemented for fjht intensity can be denoted as follaw

Q0 ——- (2.2)

With | (lux) the prevailing light intensity) (lux) half saturéion coefficient for light and

(lux) the inhibtion coefficient. In Figure 2.1@he difference between the Monod model and
Haldane model is illustrated. It should be stressed that the higher tredue, thelesser the
inhibition effect whch is alsaillustrated in Fyure 2.10In this illustrationd was set at 3150

lux andbv was set at 15000 lux and 75000 s can be deductetthat when the Monod
equation is used, the specific growth rate tends to a maximum value beyond the saturation
intensiy. While in case of the Haldane relationship a maximum specific growth rate can be
observed at the saturation intensity and beyond this value it decreases dueitthttiido.

With high values of the inhibition parameter, the function tends to a Mammdidn.
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0 20000 40000 60000 80000
I (lux)

Figure 2.10 Comparison between Monod (full Ine) and Haldane (dashed linesmodel with different
inhibition coeffcients, respectively 1500l x ( é é) an d--7-pifhflebnented x (

In Table 2.3 examples of parameters used in the Haldane equation for different microalgal

cultures are given.

An other guation often used in literature to model the microalgal growth as function of light
intensity, is the Steele relationshifcquatiorf2.22) (Alex et al. 2010; Gehring et al., 2010)
where light limited microalgal growth is given by a saturation type of respons at lbiw lig
intensities and a light inhibitioat high intensities. In thigjaation0 (lux) represents the light

inhibition constant

Table 2.3: Parameter values used in Haldane equation for different microalgal cultures

Par. Value Unit Species Reference
Ki
21 ChIo_reIIa Sorokin and Krauss,
42-43 pEm*s pyreniodosa 1962
Nanochloropsis
18 UEMm?s? oceanic Sandhes et al., 2005
K2
21 Chlo_re”a Sorokin and Krauss,
275 MEmM?“s pyreniodosa 1962
Nanochloropsis
2x10® pEm?s?! oceanic Sandhes et al., 2005

In Figure 2.11the Haldane and Steele relationship are illustrated when an equal value for the
inhibition parameter{ = 0 = 35000Iux) was used. The value for the half saturation
coefficient in case of the Hadne relation was set at 3150.léss can been seen ethHaldane

relationship reaches a maximum value faster at low light intengitiesto the low value of the
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half saturation coefficientand then starts to decreas¢owever, the decreasment of the
function, starts already atlight intensity smaller than the value of the inhibition parameters.
Whilst in caseof the Steele relationship, the function reaches a maximum valuenaadhe

light intensity exceesl the vale of the inhibition parameten swift decreasment of the

function can be observeligher light intensities can be observéthis relationship corresponds

to the observations made by Richmond (2004) and as such suggests that the Steele relationship

would be more accurate at high light intensities.

Moreover the &ele relationship is often combined with the expoméftinction of Lambert

Beer(Equation(2.23) to express ligth attenuation a\eecertain distance in the aques phase
or dueto mutual shading of the microalgal biomass. Here the light intensite atater surface
is represented b¥D (LE m? s?), while 'Q(m) represent the depth afcertain distance of the
water and the light attenuation factor is denotedol{yn). The light attenuation factor is

determined by the absorption properties of water and the biomass concentration in the water.
Mo —Q (2.22

0 "0Q (2.23

Other models described in literature that take into account tleeatiif phases in the microalgal
photsynthetic activity are Platt (1988)d Eilers and Peeters (1988). However these relations
contain parameters related to the chlorophyl content of microalgal cells and are nowadays not

commorny used to describe the miaigal growth rate.

0 20000 40000 60000 80000100000
I (lux)

Figure 2.11 Comparison between the Haldangfull line) relationship and Steele relationshigdashed line)

with Ly =Lk =35000 lux The vertical line corresponds to light intensity | = 35000 lux
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In more recent models, atheraspect that is considered when modelling the microalgal growth
rate in outdoor systems, where the light irradiance varieslgreaphotoacclimation. In the
latterproces, the microalgaedjust their pigment contei light intensity, which could afféc

the photosynthetic rate. In contrastphotoinhibition, that occurs on a timescale of minutes,
photoacclimation acts on a time scale of days (Nikolaou et al., 2016). The dynamic coupling of
photoinhibition and photoacclimation has already been desanligetature (GarcieCamacho

et al., 2012; Nikolaou et al2016), however because of the experimentalpatsed in this
dissertation, namely bataxperiments with a limited duration time, this was not taken into

account.

2.5.3.2. Kinetic modelselated to temperature

Kinetic models to describe the effect of only temperature on the microalgal growth rate are
mainly based on the exponential Arrhenius relation. This relation describes the maximum
specific growth rate at certain temperature related specific maximum growth rate at a
reference temperature. Reichert et al. (2001) adopted this Arrhenius equation to describe the

effect of temperature on the growth. The equation can be denoted as:follow
QY Q (2.29

In this relationshipY represents a refencetemperature equal to 293 K the model of Alex
etal. (2010) equalsa value of 0.046.

Another approach to describe the effect of temperature on the microalgal growth is reported in
literature as the Cardinal Temperature Model with Inflection (CTMI) that was originally
developed to describe the effect of temperature orebagRosso et al., 1993). The prineipl

of this relationship is that the microalgae hamaximum specific growth rate in a certain
temperature range. If the temperature is lower than therlowit or higher than the upper limit

of this temperature rge the specific growth rate becomes zédrhis relationship can be

denoted as
mTQeTY Y

t t 8 "YQ&IiY YUY
mTQETY Y
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With Y 1 (2.25

In this equation}Y (°C) represents the temperature below which the growth is assumed to be
zero,”Y (°C) the temperature at which there is no growth. The maximal growth ra{éC)
occurs at’Y (°C). However, it should be notedaththis relationship includes &rdinal

temperatures that need to be calibrated to experimental data and for this it can be stated that this
equation is difficult to use in practice.

2.5.3.3 Kinetic models related to nutrients

To describe the kinetics related to uptake of nutrients tmodels are commonly used,
respectively Mnod model and Droop Model. In Equation (3.26e Monod equation is
denoted. In this function the growth is described as function of the ambient dissolved
concentration of a certain substrate, respectively in@rgatrogen, inorganic phosphorus or
inorganic carbon. In this equatié¥is the ambient nutrient concentration (¢)nand0 the

half saturation coefficient (g ™ which is the nutrient concentration that corresponds to 50 %

of the maximum specificrgwth rate. The parameter is specific for the microalgal species

and specific for the substrate. The lower this value, the better the ability to grow on low
environmental concentration of this substratewever, it should be stressed that in the
numeous published manuscripts regarding measured or calibrated half saturation coefficients,
there is a lot of variability for this parameter in case of one substrate and one species. Possible
reasons for this that are mentioned in literature, are the higtrafithe used reactor, physical

conditions such as medium viscosity or temperature (Arnoldos et al.,.2005)
Y — (2.29

Compared tahe Monod equation, Droop (2.2describes the microalgal growth as function of

intracellular concentration of a certain substrate.

QY p — (2.27)
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Here'Q (g g%) represents the minimum intercellular nutrient amount needed for growih and

(g gb) is the total amount of the nutrient that can be stored in the total microalgal biomass.

In general reseahners would prefer to use the Monod model because the external substrate
concentration is easily measured. However, the applicability of the Monod model is doubtful,
because luxury uptake of nutrients and storage for later growth may lead to a temporal
uncaupling between reproductive rates andsdiged nutrient concentrationgnder unsteady

state conditions and when intracellular storage happens, the cell quota of the limiting nutrient,
(expressed as the total amount of nutrient per cell) is considebedatdetter indicator of the
nutritional statis than ambient concentratiortéowever the cell quota of individual species
cannot be measured easily undatural conditions. This difficulty arises from the fact that,
when changes occur of environmentahditions a certain adaptation period is needed before

the features can be directly related to the kinetics

In Table 2.4 some half saturation coefficients for nutrients in case of different microalgal
cultures are summarizedd big difference between thdalf saturationcoefficient for
ammonium in case tfvo Chlorellaspecies was notedhis is due to thdifferent envionments

in which the microalgae were residir@verall it can be concluded that the affirsyefficients

for nutrients are low. Althougla difference between microalgalltures can be observed,
within this literature study 75 % of the values found for ammonium were lower than 0.1 g
N m3. For nitrate this was 0.05 g N‘mConcerning inorganic phosphorus the 75% percentile

valuewas 5.27 g P riwhilst the 50% percentile value was 0.05 g m

Table 2.4 Half saturation coefficients for ammoniumand phosphate for different microalgal cultures

Nutrient ~ Value  Unit Species Reference
Ammonium
Aslan and Kapdan,
31.5 gNm3® Chlorellavulgaris 2006
MorenoGrau et al.,
0.1 gNnm? Chlorella sp 1996
Broekhuizeret al,
0.1 gNnm? Algal ponds 2012
Phosphate
Aslan and Kapdan,
10.5 gP m?® Chlorella vulgaris 2006
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2.5.4 Kinetic models with interdependent factors

Kinetic models with interdependent factors describe the microalgal growth rate as function of
multiple variables based on experimental data where the conditions of these variables are
changed simultaneously and interdependency between vaesdbles is observed. These
models are needed in view of good modelling for microalgal system optimization since there is
evidence of interdependency of certain environmental factors influencing the microalgal

growth rate.

Cavalho and Malcat§2003 adoged the Arrhenius equation in order to describe the microalgal
growth rate as function of the simultaneous effect of light and temperature, as there is evidence
of interaction between these two factors. Basic assumption for this modification is that for a
given temperature, there is a direct relation between light intensity and activation energy and
as such a light dependency of the activation energy should be included. Furthermore the light
saturation level isnfluenced as mentioned before tne temperaitre, next to the prevailing

light intensity. For this an equation was proposed that fitted the experimental data very good.

This equation could be denoted(@arvalho and Malcata, 2003
Y o - (2.29

With "O(lux) and "Y (K) respectively the prevailing light intensity and temperat@®€-:)

represents a constant related to thevatibn energy and ideal gas constant.

2.5.5 Examples of modelling microalgal autotrophic growth accounting

multiple factors

Bernard and Rémond (2012) proposed a model accountinglibahd temperature with nen
limiting nutrient conditions. The growtfunction as function of ligheind temperature was

denoted as

QEY t Os Y (2.29
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In which { () represents the optimal growth rate aatertain light intensity described
following the Haldane relationsh{gquation (2.2)). Considering the temperatutenction the

CTMI function (Equation (2.29 was used. Experimental data was extracted fromiquisly
published experimental studies, with this constraint that the number of observations made had

to be greater than the number of parameters used in the combined equation.

Although good model prediction was observed, the parameter estimation resahe/erage
95 % confidence interval width f6¥ h’Y and”Y of respectively 19.2 °C, 13.6 °C and

19.0 °C. This could indicate a shortcoming of parameter identifiability of this model structure.

Filali et al. (2011) developed a modebrf Chlorella vulgaris taking into account the
simultaneous effect of light intensity and inorganic carbon on the microalgal growth rate. The
model included dynamic equations with respect to the @éss transfer between the liquid
phase and gaseous phaibe equilibrium of inorganic carbon species in the liquid phase, a
kinetic expression for the growth on inorganic carbon and a light transfer model depending on
the reactor geometry and the incident and outgoing light intensity which was mainly determined
by the biomass concentration. Filali et g2011) calibrated the model to data abrbass
evolution during batclkexperiments ofChlorella vulgariswhen nonrlimiting conditions of
nutrients were applied. Next to the maximum specific growth ratgftimity coefficients for

growth on inorganic carbon and light intensity were considered for model calibration. A value
for the maximum specific growth rate = 1.92 d* was the result. Also experimental
biomass data coincided within the confidenderival of the calculated biomass concentration,

indicating good model performance.

Mennaa et al. (2015) used the Verhulst logistic model to compare the microalgal growth rate
and the nutrient removal kinetics in urban wastewater of different microglkeees and algal

bloom next to the harvestability of these species. The experiments were performed on lab scale
by using a batch wise photobioreactor. The temperature was maintaineti &t’20and light
intensity was set at 90 pE-fs'. The different sains were cultured in artificial medium and
maintained in the exponential growth phase before they were seeded to the batch wise
experimental setip. Results demonstrated that the proposed model was able to describe the
microalgal biomass evolution andetmutrient removal very accurate. The difference of the
maximum specific growth rate between species was accotdirtige authors due to the

difference in adaptation from culture medium to the urban wastewater between species. In Table
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2.5 this maximum sp#fic growth rates used in the simulations and the correspondence between
model simulations and experimental biomass evolutions (by means2-géliRs) are

summarized.

Table 2.5 Maximum specific growth rate in model simulations (Menaa et al., 2015)

Microalgal species Mmax (d%) R?
Chlorella vulgaris 0.38 0.99
C. sorokiniana 0.37 0.98
B. braunii 0.42 0.98
S.obliquus 0.28 0.98
A.falcatus 0.1 0.99
Bloom 0.52 0.99

2.6 Conclusions and perspectives

Since microalgae have the capacity assimilate inorganic carbon and nutrients in their
biomass, the use of this biomass for wastewater treatment offers a promising alternative for
conventional wastewater treatment systems. Moreover the biomass can be valorized as
feedstock for biofuel prodtion, or downstream processing such as anaerobic digestion.
However the microalgal growth is inherently more complex compared to activated sludge.
Several environmental factors such as temperature, prevailing light intensity, availability of
nutrients, sknity and pH can hava significant influence on the microalgal growtor this a

good insight of thesdifferent aspecstis needed in view of system performance and system

optimization.

Considering system optimization the use of virtual in silico experiments offers a promising
methodology to reduce experimental cobisspite the fact thaeveral modelsxistto describe
the microalgal growth, in general they only take into account amgommental factor or a
combination of a few factors. Mathematical models developed mimicking the natural

environment are until today only scarcely reported.

Also for model develoment a thorough knowledge of growth kinetics is needed. Although the

measirement of microalgal growth kinetics is well documented in literature, in general this is
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determined by proxy measurements which have some drawbacks. Most of these proxy
measurements are time consuming and are in need of expensive analytical equipment.
Furthermore the results ofdbe proxy measurements are very dependent on the conditions at
which the experiments were performed and are difficult to translate to other environmental

conditions.

Therefore this dissertatiorseeksthe development of a novel methodology to measure the
microalgal growth kinetics. Further a model to describe the microalgal growth and removal and
storage of nutrients taking into account several factors in view of kimgiche natural

environment is proposed.
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Simulation methods
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3.1 Introduction

For the simulations described in this dissertation, two software packages were used, namely
WEST ® (Vanhooren et al., 2003) and the Flexible Modellemyironment (FME) package
(Soetaert and Herman, 2009). In this chapter, the software and mathematical tools that were
used will be discussed.

3.2 WEST modelling platform

WEST®, acronym for Wastewater Treatment Plant Engine for Simulation and Training
(mikebydhi.com) is a modelling and simulation package especially designed for the modelling
of wastewater treatment processes. Although it provides a default set of wastewater treatment
modeds that can be readily used for simulation, it is possible to alter the provided models or
create new ones (Benedetti et al., 2008). Thus each model that consists of a set of differential
and algebraic equations can be implemented in the software. Sengridioalgal growth
models which are presented in this dissertation were not available in WEST® by default, they
were first implemented in theodel editor in a matrix format. This matrix ithe secalled

Gujer matrix (Figure.1) that consists of the diffent processes, model state variables, different
process rates and the stoichiometric coefficients. For each process a corresponding process rate
will be determined. Finally, the stoichiometric coefficients corresponding to the reactions
between differentomponents are introduced as central matrix elements. For each process
defined in the matrix a mass balance in a continuous stirred tank reactor (CSTR) can be

generated which results in ardinary differential equations.
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Figure 3.1 Schematic presentation of a Gujer Matrixincluding process rates andh stoichiometrie

Parameters that are implemented in the matrix as a symbol are defined in the parameter section.
Also additional algebraic equations can be implemented in a separate section. When the model
is implemented in the Gujer matrix, the nevedel is transformed into a model specification
language (MSL) athadded to the model base. In this model base all physical units, default

parameter values and mass balances are declared (Vanhooren et al., 2003)

To implement the model, themodelling environment is used. In case of a batch wise

experiment, the used configuration consists of a singleagetisludge unit building block.

The actual simulation is performed in tBgperimentation environment where all initial

condiions and simulation time edefined.

3.3 The Flexible Modelling Environment

The Flexible Modelling EnvironmentME) is an available package of R, an open access
package originally developed for stdical data analysis. Contraty WEST ® this software
package does not include graphical interface. Recent years this package has been more

intensively used in view of ecological modelling (Haario et al., 2009; Mannina et al., 2012).
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Also, each separate equation describing the dynamic mass balans¢onbedyped in the

softwareconsole.

With the FME package several simulation methods can be performed, namely a local and global
sensitivity analysis based on the methodology of Brun et al. (2001) and Soetaert and Herman
(2009). Also parameter estimation and a parameter identifyedailalysis according to Brun et

al. (2001) can be performed.

3.4 Parameter identifiability

3.4.1 Introduction

An important aspect regarding a certain model structure is the identifiability of parameters
included in the modeadiventhe available expanental data. In other words if it is possible by
model calibration to find a unique value for a parameter. Two different kinds of identifiability
can be distinguished, respectively the theoretical and practical identifiability. In case of
theoretical idetifiability the assumption is made that the obtained experimental data is perfect,
whilst with practical identifiability the quality of the experimental data is consideseslell

As such theoretical identifiable parameters carcdresidered as practicalhorridentifiable

parameters due to occurring errors in the experiaielata (Agathos et al., 2003).

In case of more complex model structures, the theoretical identifiability of parameters is

assessed by complex calculations.

3.4.2 Local sensitivity analysis

A local sensitivity analysis (LSA) was used to determine the influence of model parameters on
certain variables calculated. To compare the sensitivity functions of different variables, relative
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sensitivity functions (RSA) were used, rather thasadute sensitivity functions (ASF). The
ASFs were calculated by using the finite forward differene¢hiod, that could be denoted as

h h

(3.1)

In which @ 6h—) represents the output variable; represents the nominal parameter value

andUis the perturbation factor.

The RSF can be calculated: by

VYO

= (3.2)
A RSF less than 0.25 indicates a noftuential parameter. Parameters are moderately
influential when RSF is in the rang&0.25 to 1. Values higher than 1 and 2 indicate influential

and very influential parameters respectively (Audenaert et al., 2010).

3.4.3 Collinearity index

The identifiability of the model parameters can be further investigated according to Brun et al
(2001). Brun et al. (2001) present an appropriate method to tackle the problem of models with
a lot of parameters that often ledpoorly identifiable or notidentifiable parameters. This
method uses local sensitivity functions and the resuttighearity index is based on the joint
influence of parameters in a random parameter subset on the model output. More specific this
is done by assessing the degree of d#ieaar dependence of the column subsets of the
normalized scaled sensitivity matrfBrun et al., 2001). In case of ndarear dependence, a
change in the model output caused by the modification of one specific parameter in the
parameter subset can be compensated by changes of other parameters in the pasaueter

the parametersf this parameter subset cannot be uniquely idewqtifi

To assess this nelinear dependency a collinearity index is defined by Bro et al. (2001).
This collinearity index is a measure for the calculated determinant of the normalized scaled
sensitivty matrix. High value ofc indicate that this determinant tends to zero. As such

indicating linear dependency between the scaled sensitivity functions. This nsbghsfeone
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parameter will be almost completely compensated by appropriate changhe other
parameters and thus indicating a pgadentifiable parameter subsérun et al. (2001)
stipulate a threshold valup = 20 to indicate a good identifiable parameter subset with no

correlation between the parameters in the parameter subset.

3.4.4 Global sensitivity analysis

Compared to a LSA a global sensitivity analysis (GSA) is performed over a broader predefined
range in the parameter space with all parameters varying simultaneously. In particular the
Monte Carlo SimulationMCS) technige is used to perform a GSA (Schonkwiler and Meadlvill,
2009). In general a M&consists of four steps. In a first step the parameter uncertainty is
determined. For this the parameter range and the parameter distribution, or in other words the
probability demsity function (PDF) of the parameter within this range is defined. Since in this
work the PDF of the parameters was not known, a uniform distributisrassumed (Saltelli

et al., 2005 Next a method to sample the parameter space is chosen. In this awork L
Hypercube Sampling (LHS) was used. This sampling method involves a stratification of the
parameter space at which every level contains the same number of sampling points. This results
in a homogenous sampling of the partanespace (Saltelli et al. 005). In a third step the
number of simulations that need to be performed is definezbrding to Saltelli et al. (2005

the accuracy of the M&increases with increasing number of siations. However Audenaert

(2013 proposed a total of5D simulationgper parameter asrale of thumb.

In a final step the results of the M@re analyzed. Different methods are reported in literature,
however two methods were used in this work and will be discussed, namely the Standardized

Regression Coefficient method and the Monte Carlo Filtering method.
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3.4.4.1 Standardized Regressioncgfficients

The method of the Standardized Regression Coefficients is often used. For this a aalue at
certain time for the calculated model variable is taken and a linear regression is performed with
the variable and the corresponding parameférs. resulting variability in the model output

was then analysed using a linear regression which resulted in regression coefficients that are an
indication of the linear dependency between output variables anchgtera. In this study,

SPSS (IBM Armonck, NY USA was used for linear regression. After standardization of the
regresmn coefficients (Saltelli, 2005), thestatistic value of the latter was calculated from the
standard errors of the regression coefficients. The impact of parameters on the model was
evaluated by means of the absoluteatue. For example if thedtatistic value exceeds 1.96,

the parameter hag significant influence on the model output at thés5confidence level
(Saltelli, 2005. The result of such an analysis are represehin a érnado plot (Figure 3)2

Here the parameters are given with decreasing ordeiS&Ct value. In this example the
maximum photosynthetic rate and the maximum growth rate are the most influential

parameters.

Model Parameter tratio
Max Photosynthetic Rate 16.28
Max Growth Rate 16.02
Light Saturation -8.52
Light 8.a4
Photon Efficiency 8.43
Absorption Coefficient -8.32
Max Nitrogen Cell Quota 7.13
Biosythetic Efficiency 5.57
Min Nitrogen Cell Quota -1.29
Cell quota for Nitrogen 0.69
Maintenance Respiration rate -0.45
Optimum Temperature 0.12
Max Nitrogen Uptake Rate 0.04
Molecular Weight O
Half Saturation constant-Nitrogen Uptake O
Activation Energy O

Figure 3.2 Example of a tornado plot asresult of a GSA for a microalgal growth model (Quin et al., 2011)

Parameters are ranked from more influential (top) to less influential (bottom)
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3.4.4.2 Monte Carlo Filtering Method

In order to get a qualitative idea about the identifiabit the different parameters, regional
sensitivity analysiswas applied (Camacho and Gonzalez, 2008). In contrast to the SRC
mentioned above, where the focus was on a specific point in time, the entire simulation output
is taken into account. By assessing the effect of the parameters on the Sum of Squared Errors
(SSE), the impact of the parameter on the mditighg is taken into accounfThis sum of

squared errors, can be denoted as:
YYOB 0w (3.3)
where w represents the calculatedspirometric and titrimetric values awogthe measured

values, both att =i

Further the set of simulations was divided into 10 classes, imgtieasing SSEThen, the
marginal cumulative distribution fution of the parameters within each of the 10 classes was

depicted.

Clustered lines indicate nesensitive parameters. As such, the degree of dispersion of the 10
lines gives a qualitative measure, according to Camacho and Gonzalez (2008), for a first
indication of the identifiability of the parameters. As such, variations in those parameter values

will have a profound effect on the model performance.

3.5 Parameter estimation

Parameter estimation was performed by the minimization of an objective fubgtimsing an
optimization algorithm. The objective function was defi as SSBetween model prediction

and measwments and could be denoted gsi&tion (3.3)

To minimize the objective function, the Simplex algorithm (Nelder and Mead, 1965) in
WEST® was sed.
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In case of the parameter estimation was performed with the FME package, the Levenberg

Marquardt algorithm was used for objective function minimization.

3.6 Goodnesszofzfit

When model calibration and validat was performed, the goodneéss fit between measured
and calculated was quantified by calcul ati ni
1961) which can be denoted as follow:

B f

NOb
B B ;

(3.4)

in which w represents simulated data abg represents measured data points. A TIC value

lower than 0.3 (Audenaert et al., 2010) thereby indicates a good agreement with nmastsured

This criterium was preferred to assess the model performance, because it uses a relative number.
This in contrasto other crieria, such as for exampkoot Means Squared ErrofRMSE),

where only an absolute number is used.

In Table 3.1 an overwe of the different simulation methods and the chapters in this diseartati

in which theywere used is given

Table 3.1:Different simulation methodsand the chapters in this dissertation that they were used

Simulation method Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8
Local sensitivity analysis - -
Monte Carlo simulation with SRC
Monte Carlo simulation with filtering
Parameter estimation X -
Collinearity study -
Goodnesof- fit X - X

X X X
X X X X X 1
X
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A novel methodology to measure th

microalgal growth kinetics

Redrafted from

Decostere B, JansseNs Alvarado A, Maere T, Goethals P, Van Hulle SWH and Nopens |
(2013). A combined respirometetitrimeter for the determination of microalgae kinetics:

experimental data collection and modelling. Chemical Engineering Journal, 222, 85
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Abstract

The potential of microalgae for wastewater treatment has recently led to significant surge in
research towards economically more viable and technologically optimised systems. In this
context, mathematical modelling has not been used to its full caphercihis work, a novel
approach, namely the combined respirométtianetric methodology for the determination of
microalgal kinetics and an experimental protoad proposed. It was found that thweerall

oxygen production was lower than stoichiontatily expected, which could be attributed to
COe-transfer to the gas phase. A basic model for microalgae growth on inorganic carbon and
oxygen production is proposed and was successfully calibrated using several respirometric
datasets. The model structuvas based on the activated sludge models (ASM) and can now be
extended with impact of additional degrees of freedom.

4.1 Introduction

The efficiency of the use of algal processes in environmental technologies is rather low
(especially in view of upsdalg) and optimisation is required to make them -@jfctive. For

this accurate knowledge of microalgal kinetics is of crucial importance.

A method that is often used to accomplish this in the context of activated sludge waste water
treatment is respironiy (Vanrolleghem and Spanjers, 1998). This method measures the
consumption rate of £and translates this into an oxygen uptake rate which is then coupled to

the kinetics of the organisms.

The metabolism of algal biomass is somewhat different, i.e., aigakice oxygen through
photosynthesis, hereby using an inorganic carbon source fCBCQs) and the energy of
light. With abundant light, a respirometric batch setup will then result in a negative oxygen

uptake rate, or in other words an oxygen productate.

In literature, respirometry is in some cases accompanied by titrimetry for activated sludge,
providing an independent measure of biological activity, which is helpful when calibrating
models (Petersen et al., 2001). This titrimetric approachoegm@ pHeffect that is governed
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by the organismdés metabolism (Gernaey et al
inorganic form, the carbonaceous equilibrium and, hence, the pH will be influenced. Whether

the rate of the latter is directly relatedmicroalgae kinetics will be tested.

By combining titrimetry with respirometry the different aspects occurring during the microalgal
photosyntheti@ctivity will be accounted forn this chapter a respirometer setup including a
titrimetric approach iproposed along with a protocol to sessfully perform respirometric
titrimetric experiments that provide a maximum of information. Furthermore, a kinetic model

taking into account inorganic carbon limitation is proposed and calibrated.

4.2 Methods and materials

4.2.1 Cultivation of microalgae

The strain of microalgae used for the respirometric experimentE€ilasella vulgaris This

strain was cultured in a 10 L breeding reactor. The growth medium used was a variant of the
BG-11 medium (Stanier &tl., 1971). In order to prevent phosphorus limitation, the medium
was slightly modified, i.e. the phosphorus concentration was increased for the N:P ratio to
comply to the Redfield ratio, defined as 106C:16N:1P (Grobbelaar, 2004). The pH of the culture
wascontrolled by adding pulses of G@to the culture and was carried out by a pH control
algorithm implemented in LabView (www.ni.com). At the same time this provided carbon
source to the system to obtain high growth yields. Mixing through air spargingnped the
microalgae to settle or attach tetreactor wall.

4.2.2 The algal respirometer

A schematic of the microalgal respirometer is given in Figure 4.1. The 1 | reactor vessel was
heatjacketed to allow temperature control (Alpha R8, www.laudaedapling the exploration
of system behavioat different temperatures (@it at 293 K. The light cage enclosing the
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reactor entirely consisted of eight fluorescent lamps (Grolux T8 18 W, Sylvana). Light intensity
was measured using a photosynthetigvactadiation (PAR) light sensor (PAR mini, PP
systens). The light intensity measurements were performed on different locations in the reactor.
The mean value of these measurements were then considered as the light intensity value
mentioned in the text.hie spectrum of the lamps used le tight cage ranged from 400 to

700 nm

Dissolved oxygen (DO) and pH were measured online with an oxygen (Inpro 6100, Mettler
Toledo) and pH electrode (Inpro 4250, Mettler Toledo) and the data logged usingvi@®-ClI
16XE-50 data acquisition card using LabView (www.ni.com). The DO sensor delay
(determined to be 0.53 s) was taken into account according to Vanrolleghem and Spanjers
(1998). The pH was controlled online at a user definegpaet using a banded (+0.05 pH

on-off feedback control algorithm implemented in LabView by dosing HCI or NaOH through
two 3-way pinch valves (Z530A, SIRAI, ltaly). The rate and amount of 0.5 M HCl and 0.5 M

NaOH dosed into the reactor vessel constitutes the titrimetric data.
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Figure 4.1 Schematic overview of the combined respirometri¢ titrimetric setup .

4.2.3 Data interpretation

The dynamic dissolved oxygen concentration is determined from a balance between the oxygen
production rate (OPR) and oxygen transfer rate (OTR) as wasssied beforé&quation 2.3)).
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Stoichiometrically, 1.24 g of oxygen is produced forghaduction of 1 g of biomass (Equation

(2.5) and Equation (2.6)This value represents the oxygen production yilfignd is used to
calculate the OPR from thedmnass concentration present in the systdoreoverit should be
stressed that at this stage of the investigation no microalgae respiration is included in the model,
due the fact that not enough information was present in the experimental data to ¢sémate

contribution of this process.

The rate of proton addition is determined by the removal rate of carbon source spiked to the
algal respiromete As can be deducted from Equation (2.5) and Equation, @@sumption

of one gram of bicarbonate leads t@moval of 19.2 x 18 g of protons, whereas consumption

of one gram of arbon dioxide remove3.9 x 10° g of protons. Hence, the proton addition rate

can be modeled from the consumption of bicarbonate and carbon dioxide. Moreover the BSAR
due to the chemical equilibria of the different carbon species in the water and the diffusion of
COz between the atmosple and the liquid phase (Ifrim et al., 2012) influences the proton

balance.

4.2.4 Modelling approach

4.2.3.1. Modelling of the respirometric data

To describe the respiration behavmf microalgae, a first basic kinetic model was set up based

on the aperimental observations. It contains five state variables: microalgae biomass
concentration, concentrations of the different carbon species in the aqueous (8{S@m

CO; and CQ?) and dissolved oxygen concentration. The model was inspired by Gehehg

(2010) and Alex et al. (2010), which are similar to the River Water Quality Model by Reichert
et al. (2001). The next sections describe the model in more detail through the seven processes
that it accounts for. The final model presentation is ferfifst time based on the activated
sludge type models (ASM) (Henze et al., 2000), allowing (1) straightforward interchange with
existing waste water treatment models and (2) extension of the presented model. Further the
kinetic model presents a trad& between detailed metabolic models (e.g. Kliphuis et al.
(2010)) and oversimplified kinetic models (e.g. Nedbal et al. (2010)).
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4.2.3.1.1 Algal growth and decay kinetics

Since the microalgae used in the respirometric tests were suspended in the growthwaidd

a sufficient amount of macrand micronutrients, the nutrients were assumed not to be limiting
for their growth in the current experimental setting. Because temperature and light intensity
were kept constant in the different experiments studexé,mo factor for the temperature
dependency nor light intensity dependency for the growth rate of microalgae was included in
the model at this stage. The inorganic carbon soursifStrate), however, is consumed in the
respirometer and it becomes limg for the algae growth. The availability of carbon dioxide
and bicarbonate is therefore modelled by a Monod function. As already mentioned in Chapter
2, carbon dioxide is able to cross cell membranes and enters directly into the cell by diffusion.
Contraily, the uptake of bicarbonate requires a transporter system or its prior conversion to
carbon dioxide (Van den Hende et al., 2012). Therefore, carbon dioxide will be preferentially
taken up by the microalgae. Given this, an inhibition term in the binatbdinetics has been

incorporated in the model. As such the growth rate on the two inorgabiarcsources can be

denoted as

” t @ (4.2)

" t 3 (4.2)

With 0 andd (g n®) the half saturation coefficients for bicarbonate and carbon dioxide

respectively,Y and"Y (g m®) the ambient inorganic carbon species concentration in the

aqueous phase. 6 U (g m) represents the inhibition coefficient for growth lmicarbonate,
indicating the preferential uptake of carbon dioxide. When the carbon dioxide concentration is

significantly higher tham 6 0, Equation (4.1) tends to zero.

As such the dynamic balance for microalgal biomass canrimetkas

— ” ” (4.3)
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Where
® O (4.4)

In this Equationcd  (d™) represents the maximal decay rate.

4.2.3.1.2 Inorganic carbon species

The concentratiorof inorganic carbon species are related to each other by the governing
chemical equilibrium as aady mentioned in Chapter 2 bygudations (2.7) and (2.8)
Bicarbonate is dosed to the system and carbonate and carbon dioxide arerfdhmedjueous
environmemnby dissociation and dehydratiohbicarbonate, respectively. To calculate the rate

at which chemical conversion between the three carbon species takes place, the concentrations

of the carbon species need to be converted into Mald the dissociatioconstants ({

Y — pT andu Y —— pm ) are expressed in this unit and the

concentrations of the different species in the model are expressedinFgam the chemical
equilibria the equilibritn concentrations of the three species are calculated and subtracted from
the actual concentration of the inorganic carbon source. Consequently, the value that is obtained
is proportional to a driving force determined by the difference between the equilind the

actual concentration. This value is then multiplied by a rate cor€anfQ to obtain a process

rate to express the change in the concentrations of bicarbonate, carbon dioxide and carbonate,
because the system strives for a chemical dujwitn (Wolf et al., 2007). Thus theteaof

dissociation and hydratn is cenoted as

” Q (4.5)

" 0 (4.6)

Next also transfer of carbon dioxide between the liquid phase and gas phase occurs. The rate at

which this ocars can b denoted as

; 0@ — Y Y 4.7)
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With 'O the diffusion coefficient of oxygen in water ai@ the diffusion coefficient of
carbon dioxide in water, respectively 1.6540° dtand 1.73 16 m* d* (Sin, 2004)Y is

the saturation concentration (g°rand’Y theconcentratiomf carbon dioxide in the solution
(g ).
Considering the microalgal assimilation of inorganic carbon, the chemical equilibria of

inorganic carbon in the liquid phase and the transfer of carbon dioxide, the dynamic mass

bdances of the different inorganic ban sources can be expressed as

— -7 " A T[& C ’p (48)
— =7 ) P8P P (4.9)
o (4.10)

With & (g DW g* HCOs) andd (g DW g COy) yield coefficients for growth on bicarbonate

and carbon dioxide respectively.

4.2.3.1.3 Oxygen production and oxygen transfer

The dynamic mass balance ofslblved oxygen, including oxygen production and exyg

transfer can be expressed as

& o (4.11)

With & (g O, g1 DW) the oxygen produced per gram of biomass.

In Table 4.1 an overview of the differenbpesses (Gujer matrix) is given
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Table 4.1 Gujer matrix of the microalgal growth model (=Algcarb model)

By N ,‘Y .‘Y P
Process
Process  (gHcaym?) @Cm) (g CO* m?) gom?) (g DW nr) Rate

Growth on P
HCOs [A)

Growth on
CO:

Decay

O2 transfer 1 "R

CQ; transfer 1 S

COo

hydration 0.72 -1

HCGs i
dissocia -1.02 1
tion

4.2.3.1.3 Parameter values

Default values for the parameters are summarized in Table 4.2 and were obtained from literature
(Alex et al., 2010; Aseada and Van Bon, 1997; Dochain et al., 2003; Kayombo et al., 2000;
Omlin et al., 2001; Reichert et al., 2001; Wolf et al., 2007). In pasEMmeters were used in an

estimation (see further) the range that was used is provided.

The dissociation constants (pKa) for the hydration of carbon dioxide and the dissociation of
bicarbonate were taken as 6.36 and 10.33, respectively (Stumm and M8 The rate
constants for these reactions were chosen to be 1060@rdQ and Q = 100000 d

(Gehring et al., 2010), respectively indicating very fast reactions.

The values for the yields for the production of biomass foicarbonate or dissolved carbon

dioxide and the yield of oxygen production were dateed stoichiometrically from @uations

65



Chapter 4

(2.5) and (). The maximum decay rate  was set to a value of @D d* because tests

were short and the decay rate wasstdered not to play a significant role.

At this stageto have insight in the methodology, only the respirometric profile was considered

for model calibration, similato activated sludge respirometry. At first, the model was tested

by manually changinche values of different parameters. This illustrated tha andv @

had strongnfluence on the respirometric profile. This was not the case for other parameter

such ag) for example. As such it watkecided to use these 2 parameterguddhermodel

calibration.

Table 4.2: Parameter values used fosimulations with the Algcarb model

Literature Assigned

Parametel Unit

range value
t 0.1-11 * d?
) 0.0030.1 0.0L d?
) 0.549 0.549 gDW glHCOs
) 0.761 0.761 gDW g*CO;
® 1.24 124 g0 g'DW
0 0.06%6.1 3 gHCO m3
0 0.0444.4 0.2 gCom?
0 ® * d?
ko) 222110 10000 d*
ko) 10%-10%2 100000 dt
no 6.36 6.36 -
n o 10.33 10.33 -

(*) Parameter considered forodel calibration
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4.3 Results and discussion

4.3.1. Data collection and derived information

Figure 4.2 {op) shows a typical result of a respirometiiicimetric experiment. The results are
repeatable and similar profiles were obtained when certgierenental conditions were
modified (e.qg. different spiked quantities of bicarbonate, different algal biomass concentration).

The dissolved oxygen profile is the result of the balance between (1) oxygen produced by the
algae during the consumption of thelse of bicarbonate which was added to the system and
(2) oxygen removed from the system through transpotheoatmosphere as described by
Equation (2.3). Upon addition @ninorganic carbon source (in this experiment 100 g LICO

m=), the initialdynamic equilibrium is disturbed as more dissolved oxygen is produced than
removed. This results in a rapid increase of the dissolved oxygen concentration. However, this
increase is limited by the maximum growth rate of the algae (i.e. metabolic limjtatidch

leads to a new steady &g plateau in time intervdl.1-0.15 d). At some point the inorganic
carbon source is depleted (approx. 0.16 d) and limits the DO production. This leads to a decrease
in DO, eventually returning to the state the system iwawior to the addition of inorganic
carbon source. Along with the consumption of bicarbonate, protons are removed from the
system. Due to the fact thpH is controlled at a fixed s@bint (here 7.5), proton addition is
needed. According to the dashkade in Figure 4.2 (top), this happens at a constant rate
(TPAR=11.80 g n* d}) during the time interval between spiking and depletion of bicarbonate.
After depletion, the proton addition reduces to the BSAR level, in thisGcadg g v d*, or

about 26 of theTPAR. This results in a HAR for the consumption of the pulse of KGO

11.70 g m? d. The specific HAR (expressed per unit biomass) at the beginning of the
experimentrj ) is determined to be 0.024 g H BW. The total amount of protons asttifor

the consumption of the added pulse of bicarbonate be determined by integrating the
titrimetric profile yielding 1.86 g Hm3. Equation (2.6) allows an exact calculation of the
stoichiometrically required amount of acid (given the equationg:hemlcbncentration of 100 g

m= HCOs yields 1.92 g Hi m™ that needs to be added to maintain a fixed pH. Hence, the
titrimetric method had in this case a recovery rate of 97%, proving to be accurate. The calculated

OPR and OTR from the dissolved oxygerofe are shown in Figure 4.2 (bottom). The
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maximum OPR of the algae after spiking with the inorganic carbon has an average of about 250
g O m3dl. Hence, the maximum rate of oxygen preiin per unit of DW of algae @ may

equals 0.523 g 02 g DWd™. The total amount of oxygen produced is determined by
integrating the OPR curve and equals 39.94,gn® . This is significantly lower than the
theoretical amount that can Ipeoduced according todaation (2.6) from the amount of
bicarbonate (100 g ) added to the system, being 68.30 gn®. From these results the
recovery rate only amounts to about 58.4 %. This lowuwagocan be explained as follow

First, respiration is not taken into account when interpreting the data. Indeed, microalgae use
oxygen for their maintenance metabolism, thus lowering the total amount of oxygen produced.
This type of respiration is called damspiration (Wolf et al., 2007Also, with respect to the
proton addition, dark respiration will haaainfluence on the iton addition rate. However
according to Klipuis (2010), this is maximum 1@ of the proton addition due to
photosynthetic activity. In addition, photorespiration can occur at high oxygen to carbon
dioxide ratio in the solution, and as such inhibitadrthe photosynthesis occurs (Nigel et al.,
1977) Birmingham et al. (1981) stressed, that photorespiration is only inhibited at the CO
saturation level in the wateHowever, quantitiation of the phot@spiration rate is difficult.

This because this ighends on the ratio of concentration ef@D; in the vicinity of the rubisco
enzyme. According to Kliphui€010) it is very difficult to determine the latter. Ogren (1984)
mentioned a formula to express the relative photorespirédrasolated Rubiscddowever,in

a whole cell, several transport processes play a role in the functioning afilise® Hence

the proposed formula was only an estimatKliphuis (2010) applied the expressemd found

that themaxmum photorespiration rats smallerthan 4% of the photosynthetic activi This

was the casr experiments that were conducted under conditgamslar to theonespresented

in this chapter. Therefore, it cée concluded that photorespiration is negligible.

c 30 25 _
S_ 2% wgepeedepat- 22
éf’-’E 20 15 5%
o 15 | 1 ®+
go ! c T
?} 910 ', \--“1- 0.5 g S
0 5] 0 N
0 9 0.5
0 0.5 1
Time (d)
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Figure 4.2 Example of a respitometric experiment (top figure). The full line illustrates the respirometric
profile and the dashed linethe proton addition. In the bottom figure, the resulting OPR (full line) and OTR
(dashed line)(bottom figure) in case of 100 g M HCOz and an algal concentration of 478 g DW m and
with a light intensity of 4875 lux pH is controlled at7.5. Temperature is set at 288 K

Another possible exphation is that not the entire amount of inorganic carbon source is
available for the algae to be consumed and as such for oxygen production. As mentioned before,
next to oxygen stripping to the atmosphere, also stripping of carbon dioxide occurs. &n initi
concentration of 100 HCOg n® or 0.001639 moft total inorganic cantn corresponds, based

on Fuations (2.11) and (2.12), to 0.000149 mb&IH,COs, 0.001489 molt HCOs and

9.39 x 10’ mol It COs* atpH 7.5. Consumption of 1 maiorganic carboteads to addition of

1 mol H'. As such the concentration of carbon dioxide in the respirometer can be calculated
based on the addition girotons. Further, according tag&ation (2.9), the carbon dioxide
transfer rate can bmalculated from concentration and is depicted in Figure 4.3, proving to be
significant. Integrating this curve results in 22.82 § HICOs transfer to the atmosphere.
Accounting for this loss of inorganic carantotal recovery of 92.98 % is obtainéas. such

it can be concluded that tleeis a significant amount of inorganic carkibat is not available

for the microalgae due to stripping resulting in rather low recovery when expressed in the
amount of oxygen produced and that Lansfer should be aorporated in both dat

interpretation and modelling.
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Figure 4.3 Visualisation of the CQ transfer rate (top) and HCOs and COz concentration (bottom) with
100 g m® and 478 g DW n? at pH 7.5 and 288 K The K.a was set at 19 d. In the bottom figure, the full

line represents thecalculatedevolution of bicarbonate, and the dashed linthe ewlution of carbon dioxide.

4.3.2 Model calibration

The model was optimized by fitting its output to three different data sets of the respirometric
experiments with 75 mg sodium bicarbonate (or 72. 6 g #183) added to 267 g DW th
(Figure 4.4A), 75mg sodium bicarbonate added to 252 g DW (figure4.4B) and 150 mg
sodium bicarbonate (or 145.2 g HE@ ) added to 459 ®W m™ (Figure4.4C). The model

is able to describe the D@rofile acceptably well. The values of the optimized parameters are
presented in Table 4.3.

As can been seen the maximum growth rates of the three different experiments are very similar
and are comparable with values found in literature (Menaa et al., 2015). For these three
experiments the Ka spans the range from 15.83 678 d'. The consumption rate of inorganic

carbon is also plotted and is very similar in the tested cases.
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