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1.1 Introduction  

 

Wastewater treatment systems with use of microalgal biomass represents an increasingly 

attractive strategy. Indeed, microalgae have the capacity for intensive nutrient removal from 

wastewater. Further green microalgae have the capacity to fix inorganic carbon source (Sydney 

et al., 2010) and in combination with nutrients uptake (nitrogen and phosphorus), convert it into 

biomass and highly valuable molecules. In this regard, the use of microalgae for removal of 

nutrients and carbon dioxide uptake (Aslan and Kaplan, 2006) is an emerging technology which 

offers several advantages over conventional technologies for wastewater treatment. In 

particular, as microalgae produce oxygen by photosynthetic activity, the dissolved oxygen in 

the aqueous phase increases. This could be interesting when stringent standard discharge limits 

for dissolved oxygen are imposed or in case when a consortium of microalgae and bacteria is 

used for aerobic wastewater treatment (Van den Hende et al., 2011) as this could significantly 

decrease the aeration cost of waste water treatment. The latter is the major operational cost 

within conventional wastewater treatment systems.  

A major drawback and even a possible obstruction to the implementation of microalgal systems 

on industrial scale, is the high harvesting cost. Indeed, due to the dilute nature of harvested 

microalgae cultures, the dewatering is a huge operational cost rendering microalgal systems 

less economic attractive (Uduman et al., 2010). Furthermore, in the absence of light, microalgal 

species will consume oxygen by respiration. 

Optimization of this biological process is achieved by determining the optimal growth 

conditions for microalgal biomass. A cost-effective and efficient method is the use of kinetic 

growth models. With such models ñin silicoò experiments can be performed to assess the 

behavior of the microalgal biomass. However, setting up and performing such experiments in 

the virtual world alone is not enough. Indeed, next to model development and use, experimental 

data generation and mining in view of model calibration and validation is very important. Such 

experiments that aim at obtaining suitable data regarding microalgal growth, often require 

proxy measurements, for example chlorophyll content and lipid content. In general the analysis 

protocol for these measurements are very time consuming and require good technical practice. 

In view of this, respirometry offers a low cost alternative and is rather easy to perform.  
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1.2 Aims and objectives  

 

Accurate representation of algal growth is one of the most difficult and poorly understood areas 

in water quality modelling. Algal growth is inherently complex, in general showing non-linear 

responses to various environmental parameters such as temperature, light and several nutrients, 

as well as demonstrating poorly understood interactions among these separate factors (Sandnes 

et al., 2005). Site-specificity also makes extrapolation from lab or other field studies inherently 

problematic. As such accurately describing the microalgal kinetic growth kinetics remains a 

significant challenge. 

As already stated, the methods to measure the microalgal growth kinetics are mainly off-line 

measurements of parameters that are related to the growth rate. Moreover, some of these 

features are correlated to the growth rate after a certain adaptation period to the experimental 

conditions that are used. Therefore, the main objective of this dissertation is the development 

of a methodology to measure the microalgal kinetics that overcomes these drawbacks. This 

methodology involves the combined measurement of respirometric and titrimetric data. Such 

titrimetric and respirometric measurements were previously used for assessing the kinetics of 

activated sludge (Gernaey et al., 2001).  

The generated respirometric and titrimetric data was then used to set-up, calibrate and validate 

a mathematical model describing microalgal kinetics. The model implementation was based on 

already existing activated sludge models (ASM) (Henze et al., 2000). This makes future 

combination of the microalgal model and other waste water treatment models straightforward. 

Once a simple model based on a single factor limitation was successfully implemented it was 

extended with different environmental conditions limitations. This allowed for model based 

optimization of microalgal systems for nutrient removal and nutrient recovery in wastewater 

treatment.  

It should also be emphasized that in order to get a feeling for the microalgal kinetics, it was 

chosen to perform the kinetic experiments under autotrophic conditions in the presence of light. 

To this end, batch experiments with defined cultures of microalgae species were pursued. In 

view of (full scale) installations for wastewater treatment other aspects should be considered. 

Such as for example the different processes that occur during the night cycle. Also wastewater 

streams can contain loads of organic dissolved matter that can be assimilated by for example 
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bacteria or microalgae under heterotrophic and mixotrophic conditions. This was however not 

in the scope of this research but are very interesting aspects to assess in future research.  

 

1.3 Outline  

 

Next to the introduction, objectives and outline (Chapter 1), this dissertation consists of four 

major parts, namely literature review, simulation methods, a part including all performed 

research and a general conclusion and future perspective part. A brief description of the several 

chapters is given below. 

Chapter 2 is a literature review in which several aspects are treated. At first the different 

systems for wastewater treatment in which microalgal biomass is implemented are given. Next, 

methods used to measure the microalgal kinetics are discussed. This is followed by the different 

environmental factors influencing the microalgal growth rate and the different mathematical 

equations used to describe the resulting microalgal kinetics. Finally some examples of models 

are summarized. 

Chapter 3 provides information about the different simulation methods used during the 

research. 

Chapter 4 describes the development of a combined respirometric and titrimetric method to 

measure the kinetics of microalgal systems for wastewater treatment. Further a simple model 

based on only inorganic carbon limitation was developed and used. 

In Chapter 5 this methodology was further used to assess the effect of different environmental 

factors on the microalgal growth rate. Experiments with the respirometric and titrimetric 

technique were performed according to an optimal experimental design scheme. Based on the 

experimental results additional kinetic equations for inorganic nitrogen and phosphorus in view 

of further modelling were suggested. 

Chapter 6 is the implementation of the additional kinetic equations in an extended model 

structure. Moreover a parameter identifiability study was performed based on a global 
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sensitivity analysis. Based on this, the model was calibrated and validated by using the 

experimental data of Chapter 5. 

Chapter 7 describes a model based comparative study on intracellular nitrate storage in two 

marine microalgae. For this, additional kinetic equations were developed and experimental data 

generated by batch wise experiments were used. 

Chapter 8 involves the implementation of the combined respirometric and titrimetric 

methodology on different microalgal strains that were isolated from a waste stabilization pond 

in order to assess the behavior of this species when different environmental conditions were 

imposed. Specifically, the influence of light and temperature was assessed as these factors were 

not further considered in Chapter 5 and 6.  

Chapter 9 contains the final conclusions of this dissertation combined with opportunities and 

perspectives for future research. 

The relation between the chapters dealing with investigation is schematically presented in 

Figure 1.1. These chapters involve mathematical simulations, experimental work or a 

combination of both.  
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Figure 1.1: Outline of this dissertation.
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2.1 Introduction  

 

Algae are considered as one of the oldest life forms of this planet that can reside in either fresh 

water, salt water and brackish water environments. The term microalgae refers to all algae that 

are too small to be seen properly without a microscope and they mainly consist of eukaryotic 

(microalgae) and prokaryotic (cyanobacteria) microorganisms. The most important common 

feature between the eukaryotic and prokaryotic microorganisms is that their growth is mainly 

based on photosynthetic reactions where available light intensity is converted into energy for 

growth (Barsanti and Gualtieri, 2005). Furthermore nutrients are essential such as an inorganic 

carbon source, an inorganic nitrogen source (e.g. ammonium or nitrate), inorganic phosphorus 

source and some trace elements (Juneja et al., 2013).  

Next to photosynthesis, respiration and photorespiration are important processes in the 

microalgal growth that occur simultaneously when light is available. These processes are 

schematically presented in Figure 2.1 (Kliphuis et al., 2010). 

The photosynthesis involves the fixation of the light energy in the chloroplast with the release 

of oxygen and production of adenosine triphosphate (ATP) and nicotinamide dinucleotide 

phosphate (NADPH) in order to fix carbon dioxide into glyceraldehyde 3-phosphate (GAP). 

This can then be converted into biomass building blocks.  

Respiration mainly takes place in the mitochondria where NADPH is oxidized to generate extra 

energy as ATP to support biomass production and maintenance processes. During this process, 

oxygen is consumed (Graham, 1980).  

In case of high extracellular oxygen concentrations or low carbon dioxide concentrations, 

oxygen is fixated by the oxygenase activity of rubisco with the production of glycolate. This 

glycolate is converted into GAP so it can be re-used in biosynthesis. This process is called 

photorespiration and only occurs when the O2/CO2 ratio exceeds a certain value (Peltier and 

Thibault, 1985).  
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Figure 2.1: Schematic overview of photosynthesis, dark respiration and photorespiration that take place in 

the presence of light (Kliphuis et al., 2010). 

Microalgal growth can occur under different conditions. These can be autotrophic conditions 

while using light and carbon dioxide, heterotrophic conditions while using organic compounds 

as energy and carbon source or mixotrophic conditions while using both light and organic 

substrate as energy sources and CO2 and organic substrate as carbon sources (Mata et al., 2012). 

This dissertation will only focus on the autotrophic microalgal conditions, which can be further 

used as solid basis for future research with alternative microalgal growth conditions. 

 

2.2 The use of microalgae for wastewater treatment  

 

2.2.1 Introduction  

 

This section mainly focusses on removal of nutrients in wastewater with microalgal biomass. 

Many species of microalgae are able to effectively grow in wastewater conditions by their 

ability to use abundant inorganic phosphorus and nitrogen in wastewater. More specifically, 
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microalgae have been shown to be very efficient in removing these nutrients from sewage based 

wastewater either in suspension or in an immobilized form.  

Studies reported very high removal (>80 %) of ammonium, nitrate and total phosphorus from 

secondary treated wastewater by various species of Chlorella and Scenedesmus (Pittman et al., 

2011). Also a removal efficiency over 90 % of total nitrogen and 80 % of total phosphorus from 

primary settled wastewater was reached by a microalgal system containing Chlorella vulgaris 

(Lau et al., 1995). Agricultural wastewater streams are in general derived from manure and 

contain higher amounts of nitrogen and phosphorus compared to municipal wastewater. 

Microalgae have also been used for treatment of such streams and this resulted in efficient 

removal of these nutrients. Moreover, benthic freshwater algae such as Microspora willeana 

and Rhizoclonium hierglyphicum that have a higher nutrient uptake rate demonstrated a nutrient 

removal similar to the removal of nutrients from municipal wastewater (Mulbry et al., 2001). 

Although there is significant interest in the use of microalgae for treatment of industrial 

wastewater, mostly for the removal of specific components such as heavy metal pollutants and 

organic compounds, some industrial wastewaters have less potential in view of large scale algal 

biomass cultivation. This is due to the low content of nitrogen and phosphorus and the presence 

of toxins at high level concentrations (Pittman et al., 2011). Nevertheless some use of 

microalgae for industrial wastewater treatment has been reported in literature (Pitmann et al., 

2011). 

 

2.2.2 Microalgal reactor systems 

 

There are 4 major configuration systems with microalgal biomass or microalgae in combination 

with bacteria. This includes the open reactor systems, the closed photobioreactor systems, the 

waste stabilization ponds (WSP) and the immobilized microalgal systems. Open systems are in 

general simpler to conduct and are cheaper. However, open systems are more sensitive to 

environmental conditions such as light intensity and temperature compared to the closed 

systems that allow optimal control with respect to the growth conditions. Therefore the 

implementation of these microalgal cultivation system is restricted to tropical and subtropical 

regions of low rainfall and low cloud cover (Cai et al., 2013). 
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2.2.2.1 Open microalgal cultivation system  

 

One of the advantages of an open system is that it can be implemented on large scale and is 

rather easy to manage. Moreover it is more durable than large closed photobioreactors (Cai et 

al., 2013). In general open systems are carried out in natural or artificial lakes or ponds. Open 

systems are typically developed as shallow raceway ponds or circular ponds with a rotating arm 

to mix the microalgal biomass. The raceway pond (Figure 2.2) also known as high rate algae 

pond (HRAP) has a meandering configuration with in general paddle wheels to mix the 

microalgal biomass. The fresh wastewater is added to the raceway pond in front of the wheels, 

whilst the microalgal biomass is harvested behind the paddle wheels. Although these opens 

systems are cost effective, they have some disadvantages. Amongst them the fact that in order 

to obtain high microalgal biomass yield, a large surface area is needed. Ponds areas range from 

1 ha to more than 200 ha with an average depth of 20 to 30 cm (Cai et al., 2013). Furthermore, 

the systems are influenced by water evaporation and rain fall. In addition, due to the fact that 

these systems can be contaminated by unwanted algal species or algae predators, only few 

species are resistant enough in open pond systems. Species that are commonly known to be 

cultivated in large open raceway ponds are Chlorella spp., Spirulina platensis and Spirulina 

maxima (Lee, 2001).  

 

Figure 2.2: High rate algae pond (Octaform). 
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2.2.2.2 Closed photobioreactor for microalgae cultivation  

 

Closed photobioreactors (Figure 2.3) usually have better light penetrating characteristics than 

open ponds (Andersen, 2005), which make it possible to sustain high biomass and productivity 

with less retention time than is possible in open ponds. Typical reactor configuration of closed 

photobioreactor systems are flat plate reactors, tubular photobioreactors and bag systems 

(Borowitzka, 1999). The flat plate and tubular photobioreactors are designed to allow maximum 

light availability and an optimal gas exchange. Moreover, the arrangement of the reactor tubes 

can be changed depending on the orientation of the sun (Cai et al., 2013). However, there are 

some major drawbacks regarding these systems. They are more complex compared to the open 

systems and need a higher energetic input and as such higher operating cost. The bag systems 

use large plastic bags with a diameter of 0.5 m fitted with aeration systems. A major drawback 

of the bag systems is the inadequate mixing, which can induce system failure (Cai et al., 2013). 

 

 

Figure 2.3: Tubular closed photobioreactor (Chempur Technologies). 

 

2.2.2.3 Immobilized algal system s 

 

Due to the fact that the size of microalgal cells is very small and the cultures are usually quite 

diluted, harvesting or separating them from the treated wastewater or culture medium is a major 

drawback for full scale implementation. In general, the harvesting methods include chemical, 

biological, electrical and mechanical techniques with a high consumption of energy or dosed 
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chemicals (Cai et al., 2013). One way to overcome this drawback is the immobilization of 

microalgae, which prevents the microalgae from moving freely within the system. Hoffmann 

(1998) reported higher removal rates with immobilized systems compared to suspended 

systems. This could be explained by the fact that no washout of the microalgal biomass occurs. 

In addition, it is easier to control the microalgal biomass as washout of the cultivated species is 

avoided or minimized. Furthermore, the effluent is cell-free and can be re-used for other 

purposes (Hoffmann, 1998). As reported in literature, most research on immobilized microalgal 

systems is conducted at laboratory scale and entrapment is the most frequently immobilization 

technique used for these experiments. The cells are confined in a three-dimensional matrix, but 

can move freely within their compartment The matrix material is in general a synthetic 

(polyvinyl, acrylamide) or natural polymer (collagen, cellulose) (Cai et al., 2013). 

 

2.2.2.4 Waste stabilization ponds  

 

Waste stabilization ponds (WSP) are a series of large, shallow basins treating raw wastewater 

through natural processes involving bacteria and algae. They are used to treat different kinds of 

wastewater, ranging from industrial wastewater to municipal wastewater. The most important 

advantage of this type of treatment is the simplicity in construction and operation (Alvarado, 

2013). 

The use of WSPs is one of the most cost-effective methods for treating domestic and industrial 

waste water, because sunlight is the only energy requirement for its operation (unless aeration 

is applied). This in contrast to conventional aerobic wastewater treatment, in which mechanical 

aeration accounts for approximately 50 % of the energy consumption (Tchobanoglous et al., 

2003). Moreover, WSPs improve energy efficiency through the use of algae for oxygen 

production. With this kind of wastewater treatment systems, typically Biological Oxygen 

Demand (BOD) removal efficiencies up to 80 % can be achieved. In addition, treatment through 

the use of WSPs provides removal of pathogens compared to other treatment systems  

(Kayombo et al., 2004). Considering total nitrogen, net removal efficiencies as high as 80 % 

have been reported. This removal has been attributed to the assimilation of inorganic nitrogen 

by microalgal biomass, sedimentation and volatization of ammonia gas from the pond surface 

(Ferrara and Avci, 1982). For total phosphorus net removal efficiencies of 50 % have been 
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reported, mainly by sedimentation and assimilation by the microalgal biomass residing in the 

system. 

Since WSP technology highly depends on photosynthetic activity, a large surface exposed to 

solar energy is needed and as such high land area is required. Moreover because biological 

reactions are influenced by the prevailing temperature, WSP treatment systems depend on the 

climate (Von Sperling, 2007). All this implies that WSP treatment is more suitable in cases 

where land is inexpensive, climate is favorable, a low energy cost is wanted and no special 

training of the operators is desired (Arceivala, 1981). Therefore, WSPs are appropriate for low-

income tropical countries. However, there are thousands of WSPs in Europe as well and one 

third of the treatment plants in the USA are WSPs (Alvarado, 2013). 

In Figure 2.4 a schematic configuration of a WSP is illustrated. In general, it consists of a 

combination of facultative and maturation ponds where aerobic or anaerobic lagoons can be 

added for pretreatment purposes (Alvarado, 2013). 

Facultative ponds are the most common in pond treatment. The bottom layers of such ponds 

are anaerobic with similar characteristics as anaerobic ponds. The upper layer is oxygenated 

due to the presence of a high concentration of algae, which produce oxygen through 

photosynthesis (Von Sperling, 2007).  

The photosynthetic activity depends on the availability of light. As such, with increasing depth 

the oxygen production will decrease due to the lack of light penetration. Furthermore, 

photosynthesis does not take place during the night and the absence of oxygen can prevail (Von 

Sperling, 2007). 

Maturation ponds usually follow treatment in the facultative pond and serve as a tertiary 

treatment. Their primary function is to remove pathogens and they can also achieve a significant 

amount of nutrient removal (Shilton, 2005).  



Literature review 

15 

  

 

                   

Figure 2.4: Schematic representation of a WSP (Alvarado, 2013). 

 

 2.3 Methods to measure microalgal kinetics  

 

2.3.1 Introduction 

 

In view of microalgal system optimization it is essential to have insight in the kinetics related 

to the microalgal growth. The latter can be measured as an increase of biomass in the algal 

culture or it can also be measured with a surrogate parameter which is proportional to cell 

amount (Andersen, 2005). Measuring an increase in biomass or a related surrogate parameter 

in general gives insight in the microalgal growth rate. However, it is not evident to determine 

other biokinetic parameters such as for example half saturation coefficients for nutrients. 

With respect to the experimental set-up used, in general two methods can be distinguished, 

namely by means of continuous cultures or batch cultures. 
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2.3.2  Continuous cultures 

 

In continuous cultures, a fresh supply of wastewater is added to the culture at the same rate at 

which it is withdrawn. This allows the culture to remain in the exponential growth phase. Here 

the steady state concentration of the algae is determined by either a limiting nutrient or by a 

certain dilution rate that is implemented to maintain the cell concentration constant in the 

culture. In this case the specific growth rate can be calculated as: 

ʈ  Ὀ                                                                                                                                          (2.1) 

With Ὂ (m3 d-1) the flowrate of the medium and ὠ (m3) the reactor volume. Ὀ (d-1) represents 

the dilution rate. In this equation no microalgal decay is included since the assumption is made 

that the microalgal growth rate is much higher than the decay rate. However this assumption 

only stands if the microalgae did not suffer physiological stress from the environment during 

the experiment (Andersen, 2005). Furthermore, when using continuous cultures to determine 

the microalgal growth rate, a uniform mixing in the reactor is assumed. However this is an 

assumption that is difficult to maintain (in larger reactors). 

 

2.3.3 Batch cultures 

 

Compared to continuous cultures where the specific growth rate is determined by the dilution 

rate, in case of batch cultures a time series of measurements is needed to assess the rate of 

change in biomass (amount of cells). The specific growth rate can be calculated by quantifying 

the increase in number of cells within a certain time interval. The latter time interval is defined 

by the beginning and end of the logarithmic growth rate during a batch experiment (Binaghi et 

al., 2003). The growth rate can then be calculated as:  

ʈ
 

Ў
                                                                                                                                     (2.2) 

With ὔ  and ὔ the cell number at the start and in the end of the logarithmic phase of the growth 

experiment. Ўὸ is the time interval of the experiment. 
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Instead of assessing the change in cell number also other parameters can be measured that are 

related to the biomass concentration. Typical proxy measurements are organic particulate 

matter, by e.g. in vivo fluorescence, optical density or volatile suspended solids. Also the 

amount of chlorophyll, carotenoids, proteins, lipids or carbohydrates are used as proxy 

measurements, however only if these methods are linearly correlated to cell number or biomass. 

The latter is a major drawback of these proxy measurements. Hence for many parameters it is 

essential to know under which growth conditions these parameters are linearly correlated to cell 

number or biomass and what are the detection ranges. As such prior experiments need to be 

conducted to verify if there is an existing linear relationship. Wingard et al. (2002) for example 

demonstrated the non-linearity between in vivo fluorescence and cell number at high cell 

densities. This was probably due to changes in fluorescence yield by microalgal self-shading. 

Furthermore, under each growth condition the relation between parameters with respect to 

cellular content and cell number or biomass is variable during a certain time. This acclimation 

time can last for 20 or more generations (Andersen, 2005). Further, due to the photosynthetic 

activity of the microalgae it is necessary to devise a sampling strategy that takes into account 

the difference between light period and dark period to minimize the scatter in the time series 

measurements (Andersen, 2005).         

 

2.3.4 Respirometry and titrimetry 

 

2.3.4.1 Respirometry 

 

Respirometry is a well-known technique to measure the kinetics of activated sludge and 

composition of wastewater. It involves the measurement and interpretation of the respiration 

rate of activated sludge when specific experimental conditions are implemented. It is expressed 

as the amount of oxygen that is consumed by activated sludge per unit of volume and per unit 

of time. The obtained respirometric data is directly related to the growth rate of the micro-

organisms residing in activated sludge and the corresponding substrate consumption. For this it 

is generally known as a very accurate method to measure the kinetics of activated sludge 

(Carvalho et al., 2001). 
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The basic measurement principles for respirometry depend on two major criteria, namely in 

which phase the oxygen concentration is measured (gas phase or liquid phase) and whether a 

static or flowing regime for the gas phase or liquid phase is used (Gernaey et al., 2001). 

A respirometric set-up that is often used, is a batch wise reactor with constant volume and 

continuous aeration, also known as a flowing gas-static liquid respirometer (Gernaey et al., 

2001). The respiration rate of the activated sludge is calculated by making a mass balance of 

oxygen in the liquid phase. In case of a flowing gas-static liquid respirometer this mass balance 

(Equation (2.3)) consists of two terms, namely an oxygen transfer rate (OTR) due to aeration 

and an oxygen uptake rate (OUR) due to respiration of activated sludge (Gernaey et al., 2001). 

 ὕὝὙὕὟὙ                                                                                                                             (2.3) 

The OTR (g O2 
 m-3 d-1) is defined by the oxygen mass transfer between the liquid an gas phase 

(ὑὥ (d-1) and the difference between the dissolved oxygen concentration at saturation ὕ   

(g O2 m
-3) and the prevailing dissolved oxygen concentration in the liquid phase ὕ (g O2 m

-3) 

and can be denoted as: 

ὕὝὙ ὑὥ ὕ  ὕ                                                                                                                   (2.4) 

Moreover the value of the oxygen mass transfer coefficient depends on several factors such as 

for example temperature, operational conditions and geometry of the reactor (Garcia-Ochoa 

and Gomez, 2009). Even the biomass concentration and the medium composition present in the 

reactor influence these parameters. This was also observed when performing the experimental 

runs. 

Considering the biological processes that influence the dissolved oxygen concentration in the 

liquid phase, it should be noted that the metabolism of microalgal biomass is different compared 

to the metabolism of bacteria in activated sludge. Microalgae produce oxygen through 

photosynthetic activity by using an inorganic carbon source and nutrients with abundant light 

intensity. As such, the OUR term changes sign and becomes an oxygen production rate (OPR) 

term. Given the similarities, the determination of microalgae kinetics from OPR curves, in 

analogy with bacterial respirometry experiments, is an elegant method to measure microalgae 

kinetics. Since the features of the dissolved oxygen are related to the gross microalgae oxygen 
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production, the oxygen respiration to sustain the population is included. This is however a small 

percentage compared to the oxygen production due to photosynthetic activity (Kliphuis, 2010). 

The use of respirometry to assess the effect of certain environmental factors is already reported 

in literature. For example Hancke et al. (2008b) compared the use of oxygen measurements 

with pulse-amplitude-modulated fluorescence (PAM) and 14C assimilation measurements to 

determine the effect of temperature on the photosynthetic activity in different monocultures of 

marine phytoplankton. These three methods were compared because they measure the 

photosynthetic pathway differently and as such generate different responses on environmental 

variables. The oxygen level was monitored with a micro-electrode. Further Li et al. (2003) used 

online dissolved oxygen measurements for online state estimation of Duniella salina cultures 

grown in a stirred tank photobioreactor. With this they successfully implemented a method to 

improve the operational process control in the photobioreactor.  

 

2.3.1.2 Titrimetry  

 

Next to respirometry, measurements of titrimetry are used to obtain information about the 

biological processes in activated sludge. More specific the pH value of a biological system is 

influenced by the biological reactions which take place. In case of wastewater treatment systems 

with activated sludge several biological reactions such as nitrification, denitrification and the 

degradation of organic carbon source influence the pH (Gernaey, 2001). Furthermore, the pH 

is influenced by the stripping of for example carbon dioxide. However changes in pH in the 

liquid phase by biological reactions are difficult to observe due to the presence of several        

acid-base buffer systems with pH depending buffer capacity (Stumm and Morgan, 1996). This 

makes accurate calculation of the consumed or released protons difficult. Thus by controlling 

the pH at a certain level through acid and base addition, the rate of proton consumption or 

production due to biological reactions can be provided (Gernaey et al.,2001). 

With respect to microalgal growth also changes in the value of pH by biological reactions are 

induced. Indeed, according to Stumm and Morgan (1996) the photosynthetic reactions can be 

denoted as: 

ρπφὅὕ ρςςὌὕ ρφὔὕ ρψὌ  Ὄὖὕ ᴾ ὅ Ὄ ὕ ὔ ὖ ρσψὕ                 (2.5)                        
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ρπφὌὅὕ ρφὌὕ ρφὔὕ ρςτὌ  Ὄὖὕᴾ ὅ Ὄ ὕ ὔ ὖ ρσψ ὕ        (2.6)            

As can be deducted, the photosynthetic activity leads to an increase of pH in the liquid phase. 

Further it should be noted that when bicarbonate is used as inorganic carbon source, more 

protons are consumed compared to when carbon dioxide is used.  

Another aspect that influences the pH of the liquid phase during microalgal monitoring is the 

chemical equilibrium of inorganic carbon. This can simplified be denoted as: 

ὅὕ  Ὄὕ P  Ὄὅὕ P Ὄὅὕ  Ὄ                                                                                           (2.7) 

with ὑ  Ὄὅὕ ρπ  

Ὄὅὕ P ὅὕ  Ὄ                                                                                                                                                 (2.8) 

With ὑ  ὅὕ ρπ    

When inorganic carbon is used for microalgal growth, this chemical equilibrium will be 

disturbed resulting in proton production or proton consumption. 

The rate at which CO2 is transferred between the liquid phase and gas phase depends on the 

saturated CO2 concentration and the mass transfer coefficient for CO2, which can be calculated 

from the mass transfer coefficient for O2 multiplied with a reduction factor based on the 

diffusivity (Alex et al., 2010; Sin, 2004). The CO2  transfer rate (” ȟ  (g m-3 d-1) can be 

calculated as: 

” ȟ  ὑὥ ὶὩὨ Ὓ  Ὓ                                                                                               (2.9) 

Where  ὶὩὨ                                                                                                                          (2.10) 

With Ὀ the diffusion coefficient of oxygen in water and Ὀ  the diffusion coefficient of 

carbon dioxide in water, respectively 1.65 10 -4 m3 d-1  and 1.73 104 m3 d-1 (Sin, 2004). Ὓ  is 

the saturation concentration (g m-3) and Ὓ  the concentration of carbon dioxide in the solution 

(g m-3). Moreover the saturation concentration is governed by Henryôs Law:   

Ὓ  ὴ  ὑ                                                                                                                                 (2.11) 
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In this equation ὑ  (g m-3 atm-1) represents the Henry coefficient for carbon dioxide and 

ὴ (atm) the partial pressure of carbon dioxide in the gas phase. The saturation concentration 

of carbon dioxide in air at a temperature of 298 K and atmospheric pressure is 0.32 g m-3. When 

carbon dioxide gas is used as sparging gas with 2 % volumetric carbon dioxide concentration, 

the saturation concentration becomes 32 g m-3. 

The above mentioned effects result in a titrimetric background signal, i.e. the background signal 

addition rate (BSAR) (Sin et al., 2006). The amount of protons consumed by this BSAR needs 

to be corrected for when calculating the net proton addition rate due to carbon dioxide 

consumption by microalgae (i.e., proton addition rate or HAR). This can be clearly observed in 

Figure 2.5. The first part of the curve (before the ñkneeò) corresponds to the period where 

carbon dioxide is consumed by microalgae, whereas the second part is only due to the BSAR. 

The slope obtained from the first part of the curve represents the total rate of proton addition 

(TPAR), including the BSAR. The latter can be determined from the second part of the curve. 

Subtracting this from the TPAR yields the HAR. 

                                                                                               

Figure 2.5: Typical titrigra m for microalgal growth  with indication of TPAR and BSAR. 

Combining titrimetric data with respirometric data would allow to understand the biological 

processes that take place more accurately. Certain processes that cannot be observed by one 

specific data set could be explained by the other one. In Table 2.1 different processes in case of 

microalgal growth and which datatype they will affect are summarized. 

 

 

 

BSAR 

TPAR 
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Table 2.1:  Influence of different processes on specific datatype 

Data Respirometric Titrimetric 

      

 O2 production  Proton addition  

 

by photosynthetic 

activity 

by photosynthetic 

activity 

PROCES  Stripping CO2 

     

 Respiration Chemical equilibrium  

    inorganic carbon 

 

2.3.5 Conclusions 

 

Compared to batch experiments to measure the microalgal kinetics, the major drawback of 

continuous systems is the fact that the microalgal cultures should be kept in the exponential 

growth phase. As such it is not possible to determine the kinetics when certain stress conditions 

(for example light intensity) are implemented. This makes this method not suitable in view of 

mimicking the natural environment. 

Considering the measurements used in batch experiments, in general proxy measurements are 

used. However the features of this proxy measurements are not always correlated to the 

microalgal kinetics. When different conditions are imposed, an adaption period is needed before 

the features can be directly related to the kinetics.  

Therefore, it was chosen to use the combined respirometric and titrimetric methodology in the 

dissertation to determine the microalgal kinetics. This is a known methodology proven to be 

easy and accurate to measure the kinetics of activated sludge and can now be transferred to 

measure the kinetics of microalgae.  
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 2.4 Factors influencing the microalgal growth rate  

2.4.1. Introduction  

 

For successful treatment of wastewater with microalgal biomass, a thorough knowledge of the 

various parameters that effect the microalgal growth and as such the system efficiency is a 

prerequisite.  

These various parameters can be respectively physical, chemical and biological factors. Abiotic 

factors such as light intensity and temperature are the most important parameters affecting the 

microalgal growth. Examples of chemical factors are the availability of nutrients (nitrogen and 

phosphorous) and inorganic carbon source. Biological factors can be the competition between 

microalgal species residing in the system. In addition operational factors such as mixing, reactor 

configuration, the rate of dilution and harvesting frequency can affect the microalgal growth 

rate.  

 

2.4.2 Light intensity  

 

The availability of light is essential for microalgal growth. Figure 2.6 illustrates the effect of 

light intensity on the photosynthetic activity of algae.  

With light intensities lower than the light compensation point (Ὅ) respiration occurs and there 

is no gross oxygen production. Once this point is passed, the oxygen production is higher than 

the respiration. The initial slope of the curve represents the maximal efficiency of growth in 

response to light. A maximal growth rate is achieved by a certain light intensity (Ὅ). As such, 

the light intensity is no longer limiting the overall photosynthesis. Above the light saturation 

point, the light-dependent reactions are producing more ATP (adenosine-5ô-triphosphate) and 

NADPH (Nicotinamide adenine dinucleotide phosphate) than can be used by the light 

independent reactions for CO2 fixation and the availability of CO2 becomes the limiting factor. 

A further increase in light intensity will not result in a further increase in growth rate, but may 

even cause damage to the photosynthetic complex, which results in photoinhibition. 

Photoinhibition mainly occurs in the electron transfer chain located at photosystem II. Its 
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mechanism is directly related to protein damage that is responsible for the electron transfer at 

the photosystem II. As such the production of ATP is interrupted. This causes a decrease in 

growth rate and can even lead to cell death (Richmond, 2004). 

The light energy is converted into chemical energy by photosynthetic activity, however large 

parts are lost as heat. It has been reported for outdoor microalgal ponds that more than 90 % of 

the total incident solar energy is converted into heat and only less than 10 % is converted in 

chemical energy. 

 

                              

Figure 2.6: Light r espons curve (Richmond, 2004). 

 

2.4.3 Temperature  

 

Next to light, temperature is the most important factor influencing microalgal growth in non-

nutrient limiting conditions. Muñoz et al. (2004) and Bordel et al. (2009) reported that higher 

growth rates with increasing temperatures could be observed. This could be explained by the 

fact that augmentation of temperature shifts the light saturation point to higher light intensities 

and as such also the intensity at which photoinhibition occurs. This was observed by Sorokin 

and Krauss (1962) for Chlorella pyrenoidosa. Each temperature seemed to have a specific light 

intensity at which maximum growth rate was reached. For example, at a temperature of 15 °C 

light intensity at which photoinhibition occurred, equaled 242 µE m-2 s-1, while at 20 °C 

photoinhibition only occurred at 484 µE m-2 s-1 (Sorokin and Krauss, 1962).      

P
h

o
to

s
y
n

th
e

ti
c
 r

a
te

 (
P

)

Light intensity (I)
Ic Is

Ih

0

Pmax 



Literature review 

25 

  

Furthermore, the microalgal growth as function of temperature is mainly based on the Van ó t 

Hoff rule that stipulates that biological reaction rates double for each temperature increase by 

10 °C. This is due to the fact that the temperature influences the activation energy needed for 

biological reactions. However, this rule can only be validated in a narrow temperature range 

(Goldman, 1974; Henze et al., 2000). Once a certain temperature level has been exceeded, 

essential proteins are damaged and the growth rate decreases. In Figure 2.7 the growth rate of 

four different microalgal species is illustrated. As can be seen, the optimal temperature for 

growth depends on species. This can be explained by difference in cell size and in the difference 

in photosynthetic pigments concentration within the cells (Eppley and Sloan, 1966). 

 

Figure 2.7: Microalgal growth rate as function of temperature for four different microalgal species (Ras et 

al., 2013). 

 

2.4.4 Inorganic carbon  

 

Inorganic carbon, more specifically carbon dioxide and bicarbonate are the most important 

nutrients for microalgal growth. Microalgae biomass contains approximately 50 % of carbon 

on a dry weight basis. Some microalgal species are only able to assimilate either one of the 

mentioned inorganic carbon sources (Moss, 1973). Other species can use both inorganic carbon 

sources, however with a preferential uptake of carbon dioxide compared to bicarbonate. 

Moroney and Somanchi (1999) explained that this preferential uptake is due to the fact that the 
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carbon dioxide molecule is smaller and as such the diffusion into the microalgal cell occurs 

faster. According to Van den Hende et al. (2012) the main reason for this preferential uptake of 

carbon dioxide is that carbon dioxide is zero valent allowing an uptake by the cell without the 

need of active transporters.  

Furthermore the pH of the aquatic environment determines the concentration of different 

inorganic carbon species present in the water. At values of pH < 6.36 (ὴὑ= 6.36) the most 

dominant inorganic carbon source is carbon dioxide, while at values of pH higher than                

pH = 10.33 (ὴὑ= 10.33) almost all inorganic carbon prevails as carbonate (Reichert et al., 

2001). 

In Figure 2.8 the relative amount of the different inorganic species as function of the pH and 

certain temperature of the aqueous phase is illustrated.  

  

Figure 2.8: Relative amount of inorganic carbon species as function of the pH of the aqueous phase       

(LAWR, 2013). 
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2.4.5 Inorganic nitrogen and inorganic phosphorus  

 

Nitrogen and phosphorus are the most abundant nutrients in environmental water systems. 

These two nutrients play a major role in the cell metabolism since they are a part of several 

biochemical processes.  

 

2.4.5.1 Inorganic nitrogen 

 

Ammonium and nitrate are the most important sources of inorganic nitrogen for microalgal 

growth. These molecules are synthesized into glutamine which is needed for the production of 

more complex molecules as mentioned before. Further, Schuler et al. (1952) stated that 

ammonium is preferred to nitrate by green microalgae. Furthermore, cyanobacteria and diatoms 

are not able to assimilate ammonium. The uptake of nitrate is inhibited when both nitrogen 

species are present in the environment (Broekhuizen et al., 2012) and the ammonium 

concentration is at high level. This can be explained by the different way of assimilation of both 

inorganic nitrogen sources. Ammonium is intracellularly synthesized into glutamine, while in 

case of nitrate, a prior reduction by respectively nitrate reductase and nitrite reductase is needed 

where the nitrate is converted into ammonium before assimilation (Flynn et al., 1997). This 

extra reduction requires more energy, respectively 385 kJ mol-1 and as such ammonium is 

preferred compared to nitrate for microalgal growth (Bienfang, 1975). Therefore wastewater 

streams with high ammonium concentrations can be effectively used to rapidly grow 

microalgae. In contrast excess of ammonium can have a growth inhibiting effect. The 

ammonium tolerance of different algae species varies from 0.22 g N m-3 to 14 g m-3 (Collos et 

al., 2004). 

Next to inorganic nitrogen assimilation, certain microalgal species have the capacity of 

intracellular nitrate storage. In marine ecosystems specific microalgae occur that have the 

capacity to store nitrate intracellularly in transitory cytoplasmic pools in concentrations up to 

several grams per liter of nitrogen (Bode et al., 1997; Dortch et al., 1984; Kamp et al., 2011; 

Lomas and Glibert, 2000; Needoba and Harrison, 2004). With nitrogen limited conditions, the 

intracellular nitrate is reduced and used as nitrogen source for growth. 
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2.4.5.2 Inorganic phosphorus 

 

Concerning the assimilation of phosphorus only the uptake of inorganic phosphorus will be 

considered in this dissertation. Inorganic phosphorus has a significant role in microalgal cell 

growth and metabolism. It is preferably taken up in the form of H2PO4
- or HPO4

2- and is 

converted into organic compounds by phosphorylation. Then these organic compounds are 

involved in the production of ATP from adenosine di phosphate (ADP) accompanied by a form 

of energy input, such as light, by oxidation of respiratory substrates or by the electron transport 

in mitochondria. 

The growth rate of algae on phosphorus is more dependent on the internal cellular 

concentrations than on the external quantities (Richmond, 2004). However, this was not 

considered in this dissertation because of the used experimental features. In literature, 

experimental results have proved that P-starved cells could attain much higher nutrient uptake 

rates than saturated cells and may uptake phosphate by 8ï16 times the minimum cell-quota in 

phosphate repletion medium, which were stored as polyphosphate bodies (internal P pool) and 

could sustain 3-4 generations of growth in phosphate-depleted conditions theoretically (Yao et 

al., 2010).  

Furthermore phosphorus uptake may be affected by other phosphorus pools on microalgal cells 

caused by phosphorus adsorption. According to Yao et al. (2010), 60-70 % of the total 

phosphorus content in different microalgal species is made up by cell surface adsorption. This 

indicates that the kinetics of phosphorus involves a two stage kinetic process. 

 

2.4.5.3 Microalgal species dependent nutrient removal 

 

Next to influencing the microalgal growth kinetics, nitrogen and phosphorus are also removed 

from the liquid phase. 

The nutrient removal efficiency of microalgal systems can depend on the microalgal species 

used. In Table 2.2 the removal efficiencies for nitrogen and phosphorus with different 
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microalgal species (chlorophytes, cyanobacteria and diatoms) in case of different wastewater 

streams are summarized. It should also be stressed that in case of simultaneous uptake of 

nitrogen and phosphorus, the optimal N/P ratio varies among cultures due to different metabolic 

pathways within species. Podola et al. (2007) reported an optimal N/P ratio of 7/1 (w/w) for 

Chlorella vulgaris which is similar to the molar N/P ratio of 16/1 as described by Stumm and 

Morgan (1996). Considering the chlorophyte Scenedesmus sp Rhee (1978) reported a N/P ratio 

of 30/1 (w/w) is needed to grow without nutrient limitation. When this microalgal species was 

cultivated in an environment with N/P ratios between 12 to 18 (w/w) it was nitrogen limited,  

which caused an increased use of the internal phosphate pool. Thus the dissolved nitrogen 

removal was always higher than the dissolved phosphorus removal. 

Table 2.2: Nutrient removal in case of different microalgal species and different wastewater streams (Cai et 

al., 2013) 

Category Specie Wastewater            Total N                 Total P 

   Initial Removal Initial Removal 

      g m-3 % gm-3 % 

Chlorophyte 

C. 

pyreonidosa Industrial 267 87-89 56 70 

 C. vulgaris Artificial  13-410 23-100 23-100 46-94 

 C. vulgaris Industrial 20 30-95 112 20-55 

 C. vulgaris Municipal 48-1150 55-88 25 12-100 

 
C. 

reinhardtii Artificial  129 42-83 120 13-14 

 S. obliquus Municipal 27 79-100 12 47-98 

Cyanobacteria A. platensis Industrial 3 96-100 18-21 87-99 

 
Oscillatoria 

sp. Municipal 498 100 76 100 

Diatoms 

P. 

tricornutum Municipal 498-835 80-100 76-116 50-100 

 

2.4.6 Acidity of the environment  

 

The pH of the medium in which microalgae are cultured is very important because it affects the 

solubility and availability of carbon dioxide and other essential nutrients. Moreover the pH has 

a significant impact on the microalgal metabolism. Most microalgal species grow maximally 

around neutral pH values (7-7.6) (Juneja et al., 2013). 
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At higher pH, the inorganic carbon is available in form of carbonates and as such suppresses 

the microalgal growth. Also, alkaline pH, where the external pH is higher than the internal pH, 

increases the flexibility of the cell wall of mother cells. This means that rupture of the cell wall 

will be prevented and the release of autospores will be inhibited. Thus the time for cell cycle 

completion will be increased (Juneja et al., 2013). Akin to alkaline pH, low pH conditions can 

affect the nutrient uptake or induce metal toxicity which will affect the microalgal growth 

(Juneja et al., 2013). 

However some microalgal species have tolerance to high or low pH levels. For example 

Spirulina platensis has tolerance for high pH values (pH = 9), whilst Chlorococcum littorale is 

an example of microalgal species that has tolerance for low pH values (pH = 4) (Alsyah, 2012). 

2.4.7 Salinity  of the environment  

 

High salinity levels have a negative effect on several stages of the biochemical pathway for 

photosynthetic activity (Satoh et al., 1983). Therefore the salinity of the reactor in which 

cultivation is conducted should be adapted to the level of salinity of the natural environment in 

which the microalgae are residing (Kaplan et al., 1986). Although microalgae have developed 

the possibility to adapt to a wide range of salinity levels, their growth is inhibited when the 

salinity exceeds the concentration of 200 mM (Satoh et al., 1983). However this growth 

inhibition depends on microalgal species. This is illustrated in Fig 2.9 where an augmentation 

of salinity from 100 ï 200 µM caused a decrease of 50 % of growth in case of Chlorella vulgaris 

compared to 40 % in case of Chlorococcum humicotta (Abdel-Rahman et al., 2005). 

 

Figure 2.9: Influence of salinity, expressed as NaCl on the growth in case of Chlorococcum humicotta and 

Chlorella vulgaris (Abdel-Rahman et al., 2005). 
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2.5 Kinetic modelling of the microalgal growth rate  

 

Several models for algal growth modelling have been described in literature. Some of the 

models take into account only limitation of one factor, for example light intensity (Cornet et 

al., 1995; Molina Grima et al., 1999; Martinez et al.,1997; Ogbanna et al., 1995; Yeh et al., 

2010) and inorganic carbon (Hsueh et al., 2009; Goldman et al., 1974; Tang et al., 2011; Nouals, 

2000). A basic assumption governing the use of these kinetic models related to a single factor 

is that microalgal growth rate solely depends on this factor. Their applicability is thereby 

restricted to describe the response of growth to a specific range of environmental conditions 

such as natural waters. Furthermore a simplified model based on one single factor permits no 

consideration of possible interdependency between different factors. 

Some models are based on co-limitation. For example co-limitation by light intensity and 

inorganic carbon (Filali et al.,2011), co-limitation by nitrogen and phosphorus (Bougaran et al., 

2010) and co-limitation of light and temperature (Bernard and Rémond, 2012).  

Next to describing the microalgal growth based on one or multiple factors, two major 

approaches can be distinguished. One assumption with Monod kinetics is that the microalgal 

growth is not limited by high concentrations of nutrients, high temperature or high light 

intensities (Monod, 1940). This assumption seems however not trustworthy. For example at 

certain temperature, denaturation of proteins can occur causing microalgal decay. This 

compared to the assumption that microalgal growth is inhibited by for example high nutrient 

concentration, certain temperature or level of light intensity at which photoinhibition occurs. 

Such models seem to be able to describe more accurately natural systems. In addition also 

models are developed to describe the microalgal growth taking into account interactions 

between different factors, for example light intensity and temperature (Carvalho and Malcata, 

2003). 

Other authors developed detailed metabolic models by accounting for all available, yet still 

partial, knowledge about the metabolic pathways of specific microalgal species (Cogne et al., 

2011). 

Furthermore, biokinetic equations describing the microalgal growth have also been combined 

with hydrodynamic models in view of modelling full scale installations for wastewater 
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treatment systems. Alvarado (2013) combined a hydrodynamic model based upon the 

compartmental model approach with two different complete biokinetic models (Alex et al., 

2010; Sah et al., 2011) to describe the system performance of a maturation pond. The results of 

that research indicated good similarities between predicted and experimental values with 

respect to chemical oxygen demand removal. However, the biomass concentration was 

predicted dissimilar by both biokinetic models, suggesting that default parameter values or 

processes needed to be reconsidered.  

Beran and Kargi (2004) also used the combination of a biokinectic model with a two 

dimensional hydrodynamic model for predicting the effluent quality of a facultative pond in a 

WSP in terms of microalgal and bacterial biomass, nutrient concentrations and chemical oxygen 

demand. Different experimental results taken at different locations in the pond were used for 

model calibration. The results of that research confirmed the need of introducing the two 

dimensional hydrodynamic model to obtain good similarities between model predictions and 

experimental values.  

The different modelling approaches mentioned implemented on the factors influencing the 

microalgal growth rate will be discussed below. 

 

2.5.1 Maximum specific growth rate  

 

The knowledge of microalgal growth rate is essential to control the efficiency of the wastewater 

treatment and removal of nutrients. Furthermore it is interesting to make a selection of the 

microalgae with highest growth rates for the valorization of biomass and/or nutrient 

recuperation. It should be noted that, the growth rate depends on the metabolism and availability 

of nutrients, on the operating conditions provided by the system under operation, and on the 

produced biomass for the effective nutrient removal (Mata et al., 2012). In Table 2.3 maximum 

specific growth rates of different microalgal species are summarized with their residing 

environment and prevailing temperature. Most of the data obtained are in the temperature range 

between 15 ï 30 °C for both marine microalgae and freshwater microalgae. Minor differences 

between the ʈ  for freshwater and marine algae, respectively 1.55 ± 0.82 d-1 and                    

1.19 ± 0.46 d -1 in this temperature range could be observed. 
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Table 2.3: Maximum specific growth rates of different microalgal (marine and fresh water) species 

 

 

 

 

 

 

 

 

 

     

Value   

(d-1) 
ºC Algae 

    

fresh/marine References 

    

2.1 20 Chlorella vulgaris F Gutzeit, 2006 

2.5 20 algal ponds x Alex et al., 2010 

3.26 20 
Pseudochlorococcum 

sp 
F Packer, 2011 

0.6 23 
Nannochloropsis M Quinn 2011 

oculata   

0.9 20 Algal ponds x 
Broekhuizen et 

al., 2012 

1.92 25 Chlorella vulgaris F Filali, 2011 

1.3 30 Chlorella vulgaris F Dauta et al., 1990 

0.58 25 
Fragilaria 

crotonensis 
F Dauta et al., 1990 

0.77 27 Staurastrum pingue F Dauta et al., 1990 

1.32 32 
Synechocystis 

minima 
F Dauta et al., 1990 

0.4 1.8 Asterionella formosa F 
Bernard and 

Rémond, 2012  
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Table 2.3: Maximum specific growth rates of different microalgal (marine and fresh water) species 

(continued) 

Value    

(d-1) 
ºC Algae 

    

fresh/marine References 

    

1.65 20 
Asterionella 

formosa 
F 

Bernard and Rémond, 

2012 

1.34 25 
Asterionella 

formosa 
F 

Bernard and Rémond, 

2012 

0 30 
Asterionella 

formosa 
F 

Bernard and Rémond, 

2012 

1.68 37.7 
Chlorella 

pyrenoidosa 
F 

Sorokin and Krauss, 

1962 

2 38.7 
Chlorella 

pyrenoidosa 
F 

Sorokin and Krauss, 

1962 

2.15 39.6 
Chlorella 

pyrenoidosa 
F 

Sorokin and Krauss, 

1962 

     

1.68 27 
Selenastrum 

minutum 
M Bourgaran et al., 2010 

1.5 27 

Isochrysis 

affinis 

galbana 

M Bourgaran et al., 2010 

1.55 25 
Chlorella 

vulgaris 
F Concas et al., 2012 

1.36 19 
Chlorella 

pyrenoidosa 
F Goldman, 1974 

0.65 5 
Asterionella 

formosa 
F 

Bernard and Rémond, 

2012 

0.8 7.8 
Asterionella 

formosa 
F 

Bernard and Rémond, 

2012 

1.08 10.7 
Asterionella 

formosa 
F 

Bernard and Rémond, 

2012 

1.45 13.75 
Asterionella 

Formosa 
F 

Bernard and Rémond, 

2012 
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2.5.2. Modelling of microalgal  processes 

 

Dochain et al. (2003) modelled the influence of the microalgae present in the system from the 

following considerations: 

Microalgal growth: ὅὕ  Ὓ                         ὢ  ὕ 

Microalgal respiration:  ὕ ὢ                       ὢ  ὅὕ 

Microalgal decay: ὢ                       Ὓ                                                                                           (2.12) 

In these reactions the microalgae are represented by ὢ  (g DW m-3) which use soluble influent 

substrate (g m-3) (soluble nitrogen and phosphorus) and CO2 (g m-3) for growth. Their decay 

leads to soluble substrate Ὓ (g m-3). 

In general the specific microalgal growth rate ”  (g DW m-3d-1) can be denoted as:  

”  ʈ  ὢ                                                                                                                             (2.13) 

With ʈ  the maximum specific growth rate (d-1) 

From these considerations the dynamical mass balance equations of the algae-based processes 

can be deduced:  

  ʈ  ὢ  ὦ  ὢ                                                                                                          (2.14)                        

  ώ ʈ ὢ  ὑὥ Ὓ  Ὓ  ώὪ ὢ                                             (2.15)                                         

 ώʈ ὢ  ὑὥ Ὓ Ὓ  ώὪ ὢ                                                                (2.16) 

  ώʈ ὢ                                                                                                                         (2.17) 

 ώὦ ὢ                                                                                                                             (2.18) 

In these equations the microalgal decay rate is represented by ὦ (d-1),  ὑὥ (d-1) and ὑὥ 

(d-1) are the mass transfer coefficients between aqueous phase and gas phase for carbon dioxide 

and oxygen respectively. A microalgal respiration function is denoted by Ὢ . Ὓ                        

(g CO2  m-3) and Ὓ (g O2 m-3) are the concentrations of carbon dioxide and oxygen at 
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saturation, whilst Ὓ  (g CO2 m
-3) and Ὓ  (g m-3) represent the dissolved concentration of 

carbon dioxide and oxygen. The yield coefficients are denoted as ώ with i = 1 to 6.  

A classical way to describe the growth kinetics is the Monod model (Monod, 1949). This 

approach assumes a constant yield for nutrients where substrate utilization rate changes 

proportionally with the organisms growth rate. While a constant yield may be assumed for 

carbon, it may not be valid for nutrients such as nitrogen and phosphorus. As such, using this 

model could prove inadequate to explain the microalgal growth kinetics (Palabhanvi et al., 

2014). This drawback could be overcome by segregating the overall yield coefficient for 

nitrogen and phosphorus in a variable fraction and a non-variable fraction. The non-variable 

fraction corresponds to the minimum yield coefficient which is achieved when extracellular 

nutrient concentration tends to zero, whereas the variable yield coefficient depends on the 

extracellular nutrient concentration that changes in time (Palabhanvi et al., 2014). 

Since the microalgal growth is often limited by different factors such as light intensity, 

availability of nutrients and temperature this should be taken into account in the model. For this 

the specific growth rate ” of organisms is generally modelled by multiplying the maximum 

growth rate ʈ  with some limiting factors (Ὢ) (Kayombo et al., 2000). These limiting 

functions will be discussed in the following sections. Further taking into account nutrients will 

have as consequence that dynamic mass balances for these components are additionally needed. 

” ‘  БὪ  ὢ                                                                                                       (2.19)        

 

2.5.3. Kinetic models with one factor  

 

2.5.3.1 Kinetic models related to light intensity 

 

There can be several approaches distinguished to describe the growth rate as function of light 

or radiation intensity. The most simplistic way to describe the availability of light is a modified 

Monod relationship (2.20) without taking into account light inhibition (Kayambo et al., 2000; 

Lee and Shen, 2004; Bordel et al., 2009; Sasi et al.; 2011). In this equation, the prevailing field 

light intensity is denoted by Ὅ (µE m-2 s-1), ὑ represents the half saturation coefficient                
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(µE m-2 s-1) which corresponds to that light intensity required to reach half of the maximum 

specific growth rate. In literature often instead of light intensity, irradiation is mentioned 

expressed as W m-2 or as lux, depending on which type of sensor is used to quantify light.  

ὪὍ                                                                                                                                        (2.20) 

In more recent models, the effect of light saturation at low intensities and inhibition at high 

intensities can be described by a Haldane equation (Keesman and Stichter, 2003). The Haldane 

model was initially developed for growth on nutrients  to overcome the drawback of Monod 

kinetics, namely the fact that there is no inhibition included at high substrate level. The model 

implemented for light intensity can be denoted as follows: 

ὪὍ  
  

                                                                                                                   (2.21) 

With I (lux) the prevailing light intensity, ὑ (lux) half saturation coefficient for light and ὑ 

(lux) the inhibition coefficient. In Figure 2.10 the difference between the Monod model and 

Haldane model is illustrated. It should be stressed that the higher the ὑ value, the lesser the 

inhibition effect which is also illustrated in Figure 2.10. In this illustration ὑ was set at 3150 

lux and ὑ was set at 15000 lux and 75000 lux. As can be deducted that when the Monod 

equation is used, the specific growth rate tends to a maximum value beyond the saturation 

intensity. While in case of the Haldane relationship a maximum specific growth rate can be 

observed at the saturation intensity and beyond this value it decreases due to photoinhibition. 

With high values of the inhibition parameter, the function tends to a Monod function.  
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Figure 2.10: Comparison between Monod (full line) and Haldane (dashed lines) model with different 

inhibition coeffcients, respectively 15000 lux (éé) and 75000 lux (- - - -)  implemented. 

In Table 2.3 examples of parameters used in the Haldane equation for different microalgal 

cultures are given. 

An other equation often used in literature to model the microalgal growth as function of light 

intensity, is the Steele relationship (Equation(2.22)) (Alex et al. 2010; Gehring et al., 2010) 

where light limited microalgal growth is given by a saturation type of respons at low light 

intensities and a light inhibition at high intensities. In this equation ὑ (lux) represents the light 

inhibition constant. 

Table 2.3: Parameter values used in Haldane equation for different microalgal cultures 

Par. Value Unit Species Reference 

K I     

 42-43 µEm-2s-1 

Chlorella 

pyreniodosa 
Sorokin and Krauss, 

1962 

 18 µEm-2s-1 

Nanochloropsis 

oceanic Sandnes et al., 2005 

K2     

 275 µEm-2s-1 

Chlorella 

pyreniodosa 
Sorokin and Krauss, 

1962 

 2 x 10 8 µEm-2s-1 

Nanochloropsis 

oceanic Sandnes et al., 2005 

 

In Figure 2.11 the Haldane and Steele relationship are illustrated when an equal value for the 

inhibition parameter (ὑ = ὑ = 35000 lux) was used. The value for the half saturation 

coefficient in case of the Haldane relation was set at 3150 lux. As can been seen, the Haldane 

relationship reaches a maximum value faster at low light intensities, due to the low value of the 
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half saturation coefficient, and then starts to decrease. However, the decreasment of the 

function, starts already at a light intensity smaller than the value of the inhibition parameters. 

Whilst in case of the Steele relationship, the function reaches a maximum value, and once the 

light intensity exceeds the value of the inhibition parameter, a swift decreasement of the 

function can be observed. higher light intensities can be observed. This relationship corresponds 

to the observations made by Richmond (2004) and as such suggests that the Steele relationship 

would be more accurate at high light intensities. 

Moreover the Steele relationship is often combined with the exponential function of Lambert-

Beer (Equation (2.23)) to express ligth attenuation over a certain distance in the aqueous phase 

or due to mutual shading of the microalgal biomass. Here the light intensity at the water surface 

is represented by Ὅ (µE m-2 s-1), while Ὤ (m) represent the depth of a certain distance of the 

water and the light attenuation factor is denoted by ɔ (m). The light attenuation factor is 

determined by the absorption properties of water and the biomass concentration in the water. 

ὪὍ   Ὡ                                                                                                                              (2.22) 

Ὅ  Ὅ Ὡ                                                                                                                                        (2.23) 

Other models described in literature that take into account the different phases in the microalgal 

photsynthetic activity are Platt (1980) and Eilers and Peeters (1988). However these relations 

contain parameters related to the chlorophyl content of microalgal cells and are nowadays not 

commonly used to describe the microalgal growth rate. 

 

 

Figure 2.11:  Comparison between the Haldane (full line)  relationship and Steele relationship (dashed line) 

with  ╚╘ = ╚  = 35000 lux. The vertical line corresponds to light intensity I = 35000 lux 
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In more recent models, another aspect that is considered when modelling the microalgal growth 

rate in outdoor systems, where the light irradiance varies greatly, is photoacclimation. In the 

latter process, the microalgae adjust their pigment content to light intensity, which could affect 

the photosynthetic rate. In contrast to photoinhibition, that occurs on a timescale of minutes, 

photoacclimation acts on a time scale of days (Nikolaou et al., 2016). The dynamic coupling of 

photoinhibition and photoacclimation has already been described in literature (Garcia-Camacho 

et al., 2012; Nikolaou et al., 2016), however because of the experimental set-up used in this 

dissertation, namely batch experiments with a limited duration time, this was not taken into 

account. 

 

2.5.3.2. Kinetic models related to temperature 

 

Kinetic models to describe the effect of only temperature on the microalgal growth rate are 

mainly based on the exponential Arrhenius relation. This relation describes the maximum 

specific growth rate at certain temperature related to a specific maximum growth rate at a 

reference temperature. Reichert et al. (2001) adopted this Arrhenius equation to describe the 

effect of temperature on the growth. The equation can be denoted as follows:  

ὪὝ  Ὡ                                                                                                                            (2.24) 

In this relationship Ὕ represents a reference temperature equal to 293 K. In the model of Alex 

et al. (2010) ‍  equals a value of 0.046. 

Another approach to describe the effect of temperature on the microalgal growth is reported in 

literature as the Cardinal Temperature Model with Inflection (CTMI) that was originally 

developed to describe the effect of temperature on bacteria (Rosso et al., 1993). The principle 

of this relationship is that the microalgae have a maximum specific growth rate in a certain 

temperature range. If the temperature is lower than the lower limit or higher than the upper limit 

of this temperature range the specific growth rate becomes zero. This relationship can be 

denoted as: 

ʈ  

π Ὢέὶ Ὕ Ὕ

ʈ  Ȣ ὝὪέὶ  Ὕ Ὕ  Ὕ

π Ὢέὶ Ὕ  Ὕ
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With Ὕ  
  Į

       
                         (2.25)                                                                             

                                                                                                                                                                                                                                                                                                                   

In this equation, Ὕ (°C) represents the temperature below which the growth is assumed to be 

zero, Ὕ (°C) the temperature at which there is no growth. The maximal growth rate ʈ (°C) 

occurs at Ὕ (°C). However, it should be noted that this relationship includes 3 cardinal 

temperatures that need to be calibrated to experimental data and for this it can be stated that this 

equation is difficult to use in practice.  

 

2.5.3.3 Kinetic models related to nutrients 

 

To describe the kinetics related to uptake of nutrients two models are commonly used, 

respectively Monod model and Droop Model. In Equation (2.26) the Monod equation is 

denoted. In this function the growth is described as function of the ambient dissolved 

concentration of a certain substrate, respectively inorganic nitrogen, inorganic phosphorus or 

inorganic carbon. In this equation Ὓ is the ambient nutrient concentration (g m-3) and ὑ the 

half saturation coefficient (g m-3) which is the nutrient concentration that corresponds to 50 % 

of the maximum specific growth rate. The parameter ὑ is specific for the microalgal species 

and specific for the substrate. The lower this value, the better the ability to grow on low 

environmental concentration of this substrate. However, it should be stressed that in the 

numerous published manuscripts regarding measured or calibrated half saturation coefficients, 

there is a lot of variability for this parameter in case of one substrate and one species. Possible 

reasons for this that are mentioned in literature, are the hydraulics of the used reactor, physical 

conditions such as medium viscosity or temperature (Arnoldos et al., 2005). 

ὪὛ                                                                                                                                       (2.26) 

Compared to the Monod equation, Droop (2.27) describes the microalgal growth as function of 

intracellular concentration of a certain substrate. 

ὪὛ ρ                                                                                                                                (2.27) 



Chapter 2 

42 

 

Here Ὧ (g g-1) represents the minimum intercellular nutrient amount needed for growth and ὗ 

(g g-1) is the total amount of the nutrient that can be stored in the total microalgal biomass. 

In general researchers would prefer to use the Monod model because the external substrate 

concentration is easily measured. However, the applicability of the Monod model is doubtful, 

because luxury uptake of nutrients and storage for later growth may lead to a temporal 

uncoupling between reproductive rates and dissolved nutrient concentrations. Under unsteady 

state conditions and when intracellular storage happens, the cell quota of the limiting nutrient, 

(expressed as the total amount of nutrient per cell) is considered to be a better indicator of the 

nutritional status than ambient concentrations. However the cell quota of individual species 

cannot be measured easily under natural conditions. This difficulty arises from the fact that,  

when changes occur of environmental conditions, a certain adaptation period is needed before 

the features can be directly related to the kinetics. 

In Table 2.4 some half saturation coefficients for nutrients in case of different microalgal 

cultures are summarized. A big difference between the half saturation coefficient for 

ammonium in case of two Chlorella species was noted. This is due to the different environments 

in which the microalgae were residing. Overall it can be concluded that the affinity coefficients 

for nutrients are low. Although a difference between microalgal cultures can be observed, 

within this literature study 75 % of the values found for ammonium were lower than 0.1 g           

N m-3. For nitrate this was 0.05 g N m-3. Concerning inorganic phosphorus the 75% percentile 

value was 5.27 g P m-3 whilst the 50% percentile value was 0.05 g P m-3.  

Table 2.4:  Half saturation coefficients for ammonium and phosphate for different microalgal cultures 

Nutrient Value Unit Species Reference 

Ammonium      

 31.5 g N m-3 Chlorella vulgaris 
Aslan and Kapdan, 

2006 

 0.1 gN m-3 Chlorella  sp 
Moreno-Grau et al., 

1996 

 0.1 gN m-3 Algal ponds 
Broekhuizen et al., 

2012 

Phosphate     

 10.5 gP m-3 Chlorella vulgaris 
Aslan and Kapdan, 

2006 
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2.5.4 Kinetic models with interdependent factors  

 

Kinetic models with interdependent factors describe the microalgal growth rate as function of 

multiple variables based on experimental data where the conditions of these variables are 

changed simultaneously and interdependency between these variables is observed. These 

models are needed in view of good modelling for microalgal system optimization since there is 

evidence of interdependency of certain environmental factors influencing the microalgal 

growth rate. 

Carvalho and Malcata (2003) adopted the Arrhenius equation in order to describe the microalgal 

growth rate as function of the simultaneous effect of light and temperature, as there is evidence 

of interaction between these two factors. Basic assumption for this modification is that for a 

given temperature, there is a direct relation between light intensity and activation energy and 

as such a light dependency of the activation energy should be included. Furthermore the light 

saturation level is influenced as mentioned before by the temperature, next to the prevailing 

light intensity. For this an equation was proposed that fitted the experimental data very good. 

This equation could be denoted as (Carvalho and Malcata, 2003): 

ὪὍȟὝ  
 

 
  Ὡ  

                                                                                                                    (2.28) 

With Ὅ (lux) and Ὕ (K) respectively the prevailing light intensity and temperature. ß (-) 

represents a constant related to the activation energy and ideal gas constant. 

 

2.5.5 Examples of modelling microalgal  autotrophic growth accounting 

multiple factors  

 

Bernard and Rémond (2012) proposed a model accounting for light and temperature with non-

limiting nutrient conditions. The growth function as function of light and temperature was 

denoted as: 

ὪὍȟὝ  ʈ  Ὅ •Ὕ                                                                                                                  (2.29) 
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In which ʈ  (I) represents the optimal growth rate at a certain light intensity described 

following the Haldane relationship (Equation (2.21)). Considering the temperature function the 

CTMI function (Equation (2.25)) was used. Experimental data was extracted from previously 

published experimental studies, with this constraint that the number of observations made had 

to be greater than the number of parameters used in the combined equation. 

Although good model prediction was observed, the parameter estimation resulted in an average 

95 % confidence interval width for Ὕ ȟ Ὕ  and Ὕ  of respectively 19.2 °C, 13.6 °C and 

19.0 °C. This could indicate a shortcoming of parameter identifiability of this model structure.  

Filali et al. (2011) developed a model for Chlorella vulgaris taking into account the 

simultaneous effect of light intensity and inorganic carbon on the microalgal growth rate. The 

model included dynamic equations with respect to the CO2 mass transfer between the liquid 

phase and gaseous phase, the equilibrium of inorganic carbon species in the liquid phase, a 

kinetic expression for the growth on inorganic carbon and a light transfer model depending on 

the reactor geometry and the incident and outgoing light intensity which was mainly determined 

by the biomass concentration. Filali et al. (2011) calibrated the model to data of biomass 

evolution during batch,experiments of Chlorella vulgaris when non-limiting conditions of 

nutrients were applied. Next to the maximum specific growth rate, the affinity coefficients for 

growth on inorganic carbon and light intensity were considered for model calibration. A value 

for the maximum specific growth rate ʈ  = 1.92 d-1 was the result. Also experimental 

biomass data coincided within the confidence interval of the calculated biomass concentration, 

indicating good model performance.  

Mennaa et al. (2015) used the Verhulst logistic model to compare the microalgal growth rate 

and the nutrient removal kinetics in urban wastewater of different microalgal species and algal 

bloom next to the harvestability of these species. The experiments were performed on lab scale 

by using a batch wise photobioreactor. The temperature was maintained at 20 ± 3 °C and light 

intensity was set at 90 µE m-2s-1. The different strains were cultured in artificial medium and 

maintained in the exponential growth phase before they were seeded to the batch wise 

experimental set-up. Results demonstrated that the proposed model was able to describe the 

microalgal biomass evolution and the nutrient removal very accurate. The difference of the 

maximum specific growth rate between species was according to the authors due to the 

difference in adaptation from culture medium to the urban wastewater between species. In Table 
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2.5 this maximum specific growth rates used in the simulations and the correspondence between 

model simulations and experimental biomass evolutions (by means of R2-values) are 

summarized. 

Table 2.5: Maximum specific growth rate in model simulations (Menaa et al., 2015) 

Microalgal species µmax (d-1) R2 

      

Chlorella vulgaris 0.38 0.99 

C. sorokiniana 0.37 0.98 

B. braunii 0.42 0.98 

S. obliquus 0.28 0.98 

A. falcatus 0.1 0.99 

Bloom 0.52 0.99 

 

2.6 Conclusions and perspectives  

 

Since microalgae have the capacity to assimilate inorganic carbon and nutrients in their 

biomass, the use of this biomass for wastewater treatment offers a promising alternative for 

conventional wastewater treatment systems. Moreover the biomass can be valorized as 

feedstock for biofuel production, or down-stream processing such as anaerobic digestion. 

However the microalgal growth is inherently more complex compared to activated sludge. 

Several environmental factors such as temperature, prevailing light intensity, availability of 

nutrients, salinity and pH can have a significant influence on the microalgal growth. For this a 

good insight of these different aspects is needed in view of system performance and system 

optimization.  

Considering system optimization the use of virtual in silico experiments offers a promising 

methodology to reduce experimental costs. Despite the fact that several models exist to describe 

the microalgal growth, in general they only take into account one environmental factor or a 

combination of a few factors. Mathematical models developed mimicking the natural 

environment are until today only scarcely reported.  

Also for model development, a thorough knowledge of growth kinetics is needed. Although the 

measurement of microalgal growth kinetics is well documented in literature, in general this is 
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determined by proxy measurements which have some drawbacks. Most of these proxy 

measurements are time consuming and are in need of expensive analytical equipment. 

Furthermore the results of these proxy measurements are very dependent on the conditions at 

which the experiments were performed and are difficult to translate to other environmental 

conditions.  

Therefore, this dissertation seeks the development of a novel methodology to measure the 

microalgal growth kinetics. Further a model to describe the microalgal growth and removal and 

storage of nutrients taking into account several factors in view of mimicking the natural 

environment is proposed. 
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3.1 Introduction  

 

For the simulations described in this dissertation, two software packages were used, namely 

WEST ® (Vanhooren et al., 2003) and the Flexible Modelling Environment (FME) package 

(Soetaert and Herman, 2009). In this chapter, the software and mathematical tools that were 

used will be discussed. 

 

 3.2 WEST modelling platform  

 

WEST®, acronym for Wastewater Treatment Plant Engine for Simulation and Training 

(mikebydhi.com) is a modelling and simulation package especially designed for the modelling 

of wastewater treatment processes. Although it provides a default set of wastewater treatment 

models that can be readily used for simulation, it is possible to alter the provided models or 

create new ones (Benedetti et al., 2008). Thus each model that consists of a set of differential 

and algebraic equations can be implemented in the software. Since the microalgal growth 

models which are presented in this dissertation were not available in WEST® by default, they 

were first implemented in the model editor in a matrix format. This matrix is the so-called 

Gujer matrix (Figure 3.1) that consists of the different processes, model state variables, different 

process rates and the stoichiometric coefficients. For each process a corresponding process rate 

will be determined. Finally, the stoichiometric coefficients corresponding to the reactions 

between different components are introduced as central matrix elements. For each process 

defined in the matrix a mass balance in a continuous stirred tank reactor (CSTR) can be 

generated which results in an ordinary differential equations. 
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Figure 3.1: Schematic presentation of a Gujer Matrix including process rates and a stoichiometrie. 

 

Parameters that are implemented in the matrix as a symbol are defined in the parameter section. 

Also additional algebraic equations can be implemented in a separate section. When the model 

is implemented in the Gujer matrix, the new model is transformed into a model specification 

language (MSL) and added to the model base. In this model base all physical units, default 

parameter values and mass balances are declared (Vanhooren et al., 2003). 

To implement the model, the modelling environment is used. In case of a batch wise 

experiment, the used configuration consists of a single activated sludge unit building block. 

The actual simulation is performed in the experimentation environment, where all initial 

conditions and simulation time are defined.  

 

3.3 The Flexible Modelling Environment  

 

The Flexible Modelling Environment (FME) is an available package of R, an open access 

package originally developed for statistical data analysis. Contrary to WEST ® this software 

package does not include a graphical interface. Recent years this package has been more 

intensively used in view of ecological modelling (Haario et al., 2009; Mannina et al., 2012). 
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Also, each separate equation describing the dynamic mass balance needs to be typed in the 

software console. 

With the FME package several simulation methods can be performed, namely a local and global 

sensitivity analysis based on the methodology of Brun et al. (2001) and Soetaert and Herman 

(2009). Also parameter estimation and a parameter identifiability analysis according to Brun et 

al. (2001) can be performed.  

 

3.4 Parameter identifiability  

 

3.4.1 Introduction  

 

An important aspect regarding a certain model structure is the identifiability of parameters 

included in the model given the available experimental data. In other words if it is possible by 

model calibration to find a unique value for a parameter. Two different kinds of identifiability 

can be distinguished, respectively the theoretical and practical identifiability. In case of 

theoretical identifiability the assumption is made that the obtained experimental data is perfect, 

whilst with practical identifiability the quality of the experimental data is considered as well. 

As such theoretical identifiable parameters can be considered as practically non-identifiable 

parameters due to occurring errors in the experimental data (Agathos et al., 2003). 

In case of more complex model structures, the theoretical identifiability of parameters is 

assessed by complex calculations. 

 

3.4.2 Local sensitivity analysis  

 

A local sensitivity analysis (LSA) was used to determine the influence of model parameters on 

certain variables calculated. To compare the sensitivity functions of different variables, relative 
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sensitivity functions (RSA) were used, rather than absolute sensitivity functions (ASF). The 

ASFs were calculated by using the finite forward difference method, that could be denoted as:  

 
ȟ   ȟ

 
                                                                                                                (3.1) 

In which ώὸȟ—) represents the output variable, — represents the nominal parameter value 

and Ů is the perturbation factor. 

The RSF can be calculated by:  

ὙὛὊ 
 

ȟ
                                                                                                                                     (3.2) 

A RSF less than 0.25 indicates a non-influential parameter. Parameters are moderately 

influential when RSF is in the range of 0.25 to 1. Values higher than 1 and 2 indicate influential 

and very influential parameters respectively (Audenaert et al., 2010). 

 

3.4.3 Collinearity index  

 

The identifiability of the model parameters can be further investigated according to Brun et al. 

(2001). Brun et al. (2001) present an appropriate method to tackle the problem of models with 

a lot of parameters that often lead to poorly identifiable or non-identifiable parameters. This 

method uses local sensitivity functions and the resulting collinearity index is based on the joint 

influence of parameters in a random parameter subset on the model output. More specific this 

is done by assessing the degree of near-linear dependence of the column subsets of the 

normalized scaled sensitivity matrix (Brun et al., 2001). In case of near-linear dependence, a 

change in the model output caused by the modification of one specific parameter in the 

parameter subset can be compensated by changes of other parameters in the parameter. As such 

the parameters of this parameter subset cannot be uniquely identified.  

To assess this near-linear dependency a collinearity index ὣ is defined by Brun et al. (2001). 

This collinearity index is a measure for the calculated determinant of the normalized scaled 

sensitivity matrix. High value of ὣ indicate that this determinant tends to zero. As such 

indicating linear dependency between the scaled sensitivity functions. This means a shift of one 
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parameter will be almost completely compensated by appropriate changes of the other 

parameters and thus indicating a poorly identifiable parameter subset. Brun et al. (2001) 

stipulate a threshold value ὣ = 20 to indicate a good identifiable parameter subset with no 

correlation between the parameters in the parameter subset. 

 

3.4.4 Global sensitivity analysis   

 

Compared to a LSA a global sensitivity analysis (GSA) is performed over a broader predefined 

range in the parameter space with all parameters varying simultaneously. In particular the 

Monte Carlo Simulation (MCS) technique is used to perform a GSA (Schonkwiler and Medvill, 

2009). In general a MCS consists of four steps. In a first step the parameter uncertainty is 

determined. For this the parameter range and the parameter distribution, or in other words the 

probability density function (PDF) of the parameter within this range is defined. Since in this 

work the PDF of the parameters was not known, a uniform distribution was assumed (Saltelli 

et al., 2005). Next a method to sample the parameter space is chosen. In this work Latin 

Hypercube Sampling (LHS) was used. This sampling method involves a stratification of the 

parameter space at which every level contains the same number of sampling points. This results 

in a homogenous sampling of the parameter space (Saltelli et al., 2005). In a third step the 

number of simulations that need to be performed is defined. According to Saltelli et al. (2005) 

the accuracy of the MCS increases with increasing number of simulations. However Audenaert 

(2013) proposed a total of 150 simulations per parameter as a rule of thumb.  

In a final step the results of the MCS are analyzed. Different methods are reported in literature, 

however two methods were used in this work and will be discussed, namely the Standardized 

Regression Coefficient method and the Monte Carlo Filtering method. 
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3.4.4.1 Standardized Regression Coefficients 

 

The method of the Standardized Regression Coefficients is often used. For this a value at a 

certain time for the calculated model variable is taken and a linear regression is performed with 

the variable and the corresponding parameters. The resulting variability in the model output 

was then analysed using a linear regression which resulted in regression coefficients that are an 

indication of the linear dependency between output variables and parameters. In this study, 

SPSS (IBM, Armonck, NY USA) was used for linear regression. After standardization of the 

regression coefficients (Saltelli, 2005), the t-statistic value of the latter was calculated from the 

standard errors of the regression coefficients. The impact of parameters on the model was 

evaluated by means of the absolute t-value. For example if the t-statistic value exceeds 1.96, 

the parameter has a significant influence on the model output at the 5 % confidence level 

(Saltelli, 2005). The results of such an analysis are represented in a tornado plot (Figure 3.2). 

Here the parameters are given with decreasing order of t-SRC value. In this example the 

maximum photosynthetic rate and the maximum growth rate are the most influential 

parameters. 

 

 

Figure 3.2: Example of a tornado plot as result of a GSA for a microalgal growth model (Quin et al., 2011). 

Parameters are ranked from more influential (top) to less influential (bottom) 
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3.4.4.2 Monte Carlo Filtering Method 

 

In order to get a qualitative idea about the identifiability of the different parameters, regional 

sensitivity analysis was applied (Camacho and Gonzalez, 2008). In contrast to the SRC 

mentioned above, where the focus was on a specific point in time, the entire simulation output 

is taken into account. By assessing the effect of the parameters on the Sum of Squared Errors 

(SSE), the impact of the parameter on the model fitting is taken into account. This sum of 

squared errors, can be denoted as:  

ὛὛὉ В ώ ώ                                                                                                                       (3.3) 

where ώ represents the calculated respirometric and titrimetric values and ώ the measured 

values, both at t = i  

Further the set of simulations was divided into 10 classes, with increasing SSE. Then, the 

marginal cumulative distribution function of the parameters within each of the 10 classes was 

depicted.  

Clustered lines indicate non-sensitive parameters. As such, the degree of dispersion of the 10 

lines gives a qualitative measure, according to Camacho and Gonzalez (2008), for a first 

indication of the identifiability of the parameters. As such, variations in those parameter values 

will have a profound effect on the model performance. 

 

3.5 Parameter estimation  

 

Parameter estimation was performed by the minimization of an objective function by using an 

optimization algorithm. The objective function was defined as SSE between model prediction 

and measurements and could be denoted as Equation (3.3). 

To minimize the objective function, the Simplex algorithm (Nelder and Mead, 1965) in 

WEST® was used.  
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In case of the parameter estimation was performed with the FME package, the Levenberg ï 

Marquardt algorithm was used for objective function minimization.  

 

3.6 Goodnessɀofɀfit  

 

When model calibration and validation was performed, the goodnessïofïfit between measured 

and calculated was quantified by calculating the Theilôs inequality coefficient (TIC) (Theil, 

1961) which can be denoted as follow:  

ὝὍὅ 
В  ȟ

В  В ȟ

                                                                                                                           (3.4) 

in which ώ represents simulated data and ώȟ  represents measured data points. A TIC value 

lower than 0.3 (Audenaert et al., 2010) thereby indicates a good agreement with measured data. 

This criterium was preferred to assess the model performance, because it uses a relative number. 

This in contrast to other criteria, such as for example Root Means Squared Errors (RMSE), 

where only an absolute number is used. 

In Table 3.1 an overview of the different simulation methods and the chapters in this dissertation 

in which they were used is given. 

Table 3.1: Different simulation methods and the chapters in this dissertation that they were used 

Simulation method Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 

Local sensitivity analysis - - - - - 

Monte Carlo simulation with SRC - - X X - 

Monte Carlo simulation with filtering - - X X - 

Parameter estimation X - X X X 

Collinearity study  -  X - 

Goodness-of- fit  X - X X X 
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Chapter 4 

A novel methodology to measure the 

microalgal growth kinetics 

 

Redrafted from 

Decostere B, Janssens N, Alvarado A, Maere T, Goethals P, Van Hulle SWH and Nopens I 

(2013). A combined respirometer- titrimeter for the determination of microalgae kinetics: 

experimental data collection and modelling. Chemical Engineering Journal, 222, 85-93 
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Abstract 

The potential of microalgae for wastewater treatment has recently led to significant surge in 

research towards economically more viable and technologically optimised systems. In this 

context, mathematical modelling has not been used to its full capacity. In this work, a novel 

approach, namely the combined respirometric-titrimetric methodology for the determination of 

microalgal kinetics and an experimental protocol are proposed. It was found that the overall 

oxygen production was lower than stoichiometrically expected, which could be attributed to 

CO2-transfer to the gas phase. A basic model for microalgae growth on inorganic carbon and 

oxygen production is proposed and was successfully calibrated using several respirometric 

datasets. The model structure was based on the activated sludge models (ASM) and can now be 

extended with impact of additional degrees of freedom.  

 

4.1 Introduction  

 

The efficiency of the use of algal processes in environmental technologies is rather low 

(especially in view of upscaling) and optimisation is required to make them cost-effective. For 

this accurate knowledge of microalgal kinetics is of crucial importance. 

A method that is often used to accomplish this in the context of activated sludge waste water 

treatment is respirometry (Vanrolleghem and Spanjers, 1998). This method measures the 

consumption rate of O2 and translates this into an oxygen uptake rate which is then coupled to 

the kinetics of the organisms. 

The metabolism of algal biomass is somewhat different, i.e., algae produce oxygen through 

photosynthesis, hereby using an inorganic carbon source (CO2 or HCO3
-) and the energy of 

light. With abundant light, a respirometric batch setup will then result in a negative oxygen 

uptake rate, or in other words an oxygen production rate.  

In literature, respirometry is in some cases accompanied by titrimetry for activated sludge, 

providing an independent measure of biological activity, which is helpful when calibrating 

models (Petersen et al., 2001). This titrimetric approach exploits a pH-effect that is governed 
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by the organismôs metabolism (Gernaey et al., 2002). Since microalgae use carbon in its 

inorganic form, the carbonaceous equilibrium and, hence, the pH will be influenced. Whether 

the rate of the latter is directly related to microalgae kinetics will be tested.  

By combining titrimetry with respirometry the different aspects occurring during the microalgal 

photosynthetic activity will be accounted for. In this chapter a respirometer setup including a 

titrimetric approach is proposed along with a protocol to successfully perform respirometric-

titrimetric experiments that provide a maximum of information. Furthermore, a kinetic model 

taking into account inorganic carbon limitation is proposed and calibrated.  

 

4.2 Methods and materials  

 

4.2.1 Cultivation of microalgae  

 

The strain of microalgae used for the respirometric experiments was Chlorella vulgaris. This 

strain was cultured in a 10 L breeding reactor. The growth medium used was a variant of the 

BG-11 medium (Stanier et al., 1971). In order to prevent phosphorus limitation, the medium 

was slightly modified, i.e. the phosphorus concentration was increased for the N:P ratio to 

comply to the Redfield ratio, defined as 106C:16N:1P (Grobbelaar, 2004). The pH of the culture 

was controlled by adding pulses of CO2 into the culture and was carried out by a pH control 

algorithm implemented in LabView (www.ni.com). At the same time this provided carbon 

source to the system to obtain high growth yields. Mixing through air sparging prevented the 

microalgae to settle or attach to the reactor wall.  

 

4.2.2 The algal respirometer  

 

A schematic of the microalgal respirometer is given in Figure 4.1. The 1 l reactor vessel was 

heat-jacketed to allow temperature control (Alpha R8, www.lauda.de) enabling the exploration 

of system behavior at different temperatures (default at 293 K). The light cage enclosing the 
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reactor entirely consisted of eight fluorescent lamps (Grolux T8 18 W, Sylvana). Light intensity 

was measured using a photosynthetic active radiation (PAR) light sensor (PAR mini, PP- 

systems). The light intensity measurements were performed on different locations in the reactor. 

The mean value of these measurements were then considered as the light intensity value 

mentioned in the text. The spectrum of the lamps used in the light cage ranged from 400 to    

700 nm. 

Dissolved oxygen (DO) and pH were measured online with an oxygen (Inpro 6100, Mettler 

Toledo) and pH electrode (Inpro 4250, Mettler Toledo) and the data logged using a PCI-MIO-

16XE-50 data acquisition card using LabView (www.ni.com). The DO sensor delay 

(determined to be 0.53 s) was taken into account according to Vanrolleghem and Spanjers 

(1998). The pH was controlled online at a user defined set-point using a banded (+/- 0.05 pH) 

on-off feedback control algorithm implemented in LabView by dosing HCl or NaOH through 

two 3-way pinch valves (Z530A, SIRAI, Italy). The rate and amount of 0.5 M HCl and 0.5 M 

NaOH dosed into the reactor vessel constitutes the titrimetric data. 

 

Figure 4.1: Schematic overview of the combined respirometric ï titrimetric setup . 

 

4.2.3 Data interpretation  

 

The dynamic dissolved oxygen concentration is determined from a balance between the oxygen 

production rate (OPR) and oxygen transfer rate (OTR) as was discussed before (Equation (2.3)). 
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Stoichiometrically, 1.24 g of oxygen is produced for the production of 1 g of biomass (Equation 

(2.5) and Equation (2.6)). This value represents the oxygen production yield (ὣ) and is used to 

calculate the OPR from the biomass concentration present in the system. Moreover it should be 

stressed that at this stage of the investigation no microalgae respiration is included in the model, 

due the fact that not enough information was present in the experimental data to estimate the 

contribution of this process.  

The rate of proton addition is determined by the removal rate of carbon source spiked to the 

algal respirometer. As can be deducted from Equation (2.5) and Equation (2.6), consumption 

of one gram of bicarbonate leads to a removal of 19.2 x 10-3 g of protons, whereas consumption 

of one gram of carbon dioxide removes 3.9 x 10-3 g of protons. Hence, the proton addition rate 

can be modeled from the consumption of bicarbonate and carbon dioxide. Moreover the BSAR 

due to the chemical equilibria of the different carbon species in the water and the diffusion of 

CO2 between the atmosphere and the liquid phase (Ifrim et al., 2012) influences the proton 

balance.  

 

4.2.4 Modelling approach  

 

4.2.3.1. Modelling of the respirometric data 

 

To describe the respiration behavior of microalgae, a first basic kinetic model was set up based 

on the experimental observations. It contains five state variables: microalgae biomass 

concentration, concentrations of the different carbon species in the aqueous system (HCO3
-, 

CO2 and CO3
2-) and dissolved oxygen concentration. The model was inspired by Gehring et al. 

(2010) and Alex et al. (2010), which are similar to the River Water Quality Model by Reichert 

et al. (2001). The next sections describe the model in more detail through the seven processes 

that it accounts for. The final model presentation is for the first time based on the activated 

sludge type models (ASM) (Henze et al., 2000), allowing (1) straightforward interchange with 

existing waste water treatment models and (2) extension of the presented model. Further the 

kinetic model presents a trade-off between detailed metabolic models (e.g. Kliphuis et al. 

(2010)) and oversimplified kinetic models (e.g. Nedbal et al. (2010)). 
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4.2.3.1.1 Algal growth and decay kinetics  

 

Since the microalgae used in the respirometric tests were suspended in the growth medium with 

a sufficient amount of macro- and micronutrients, the nutrients were assumed not to be limiting 

for their growth in the current experimental setting. Because temperature and light intensity 

were kept constant in the different experiments studied here, no factor for the temperature 

dependency nor light intensity dependency for the growth rate of microalgae was included in 

the model at this stage. The inorganic carbon source (C-substrate), however, is consumed in the 

respirometer and it becomes limiting for the algae growth. The availability of carbon dioxide 

and bicarbonate is therefore modelled by a Monod function. As already mentioned in Chapter 

2, carbon dioxide is able to cross cell membranes and enters directly into the cell by diffusion. 

Contrarily, the uptake of bicarbonate requires a transporter system or its prior conversion to 

carbon dioxide (Van den Hende et al., 2012). Therefore, carbon dioxide will be preferentially 

taken up by the microalgae. Given this, an inhibition term in the bicarbonate kinetics has been 

incorporated in the model. As such the growth rate on the two inorganic carbon sources can be 

denoted as:  

”  ʈ  
  

ὢ                                                                     (4.1)          

 ”  ʈ  ὢ                                                                                                 (4.2)  

With ὑ  and ὑ  (g m-3) the half saturation coefficients for bicarbonate and carbon dioxide 

respectively, Ὓ  and Ὓ (g m-3) the ambient inorganic carbon species concentration in the 

aqueous phase. ὑὅὕ (g m-3) represents the inhibition coefficient for growth on bicarbonate, 

indicating the preferential uptake of carbon dioxide. When the carbon dioxide concentration is 

significantly higher than ὑὅὕ, Equation (4.1) tends to zero. 

As such the dynamic balance for microalgal biomass can be denoted as:  

 ”  ”  ”                                                                                         (4.3) 
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Where: 

”  ὦ  ὢ                                                                                                                           (4.4) 

In this Equation ὦ  (d-1) represents the maximal decay rate.  

 

4.2.3.1.2 Inorganic carbon species  

 

The concentration of inorganic carbon species are related to each other by the governing 

chemical equilibrium as already mentioned in Chapter 2 by Equations (2.7) and (2.8). 

Bicarbonate is dosed to the system and carbonate and carbon dioxide are formed in the aqueous 

environment by dissociation and dehydration of bicarbonate, respectively. To calculate the rate 

at which chemical conversion between the three carbon species takes place, the concentrations 

of the carbon species need to be converted into mol l-1, as the dissociation constants (ὑ

Ὓ  ρπ  and ὑ Ὓ  ρπ ) are expressed in this unit and the 

concentrations of the different species in the model are expressed in g m-3. From the chemical 

equilibria the equilibrium concentrations of the three species are calculated and subtracted from 

the actual concentration of the inorganic carbon source. Consequently, the value that is obtained 

is proportional to a driving force determined by the difference between the equilibrium and the 

actual concentration. This value is then multiplied by a rate constant Ὧ or Ὧ to obtain a process 

rate to express the change in the concentrations of bicarbonate, carbon dioxide and carbonate, 

because the system strives for a chemical equilibrium (Wolf et al., 2007). Thus the rate of 

dissociation and hydration is denoted as:  

”  Ὧ  
 

 
                                                                                                 (4.5) 

”  Ὧ  
 

 
                                                                                               (4.6) 

Next also transfer of carbon dioxide between the liquid phase and gas phase occurs. The rate at 

which this occurs can be denoted as:  

” ȟ  ὑὥ Ὓ Ὓ                                                                                                              (4.7) 
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With Ὀ  the diffusion coefficient of oxygen in water and Ὀ  the diffusion coefficient of 

carbon dioxide in water, respectively 1.65 10 -4 m3 d-1 and 1.73 10-4 m3 d-1 (Sin, 2004). Ὓ  is 

the saturation concentration (g m-3) and Ὓ  the concentration of carbon dioxide in the solution 

(g m-3).                    

Considering the microalgal assimilation of inorganic carbon, the chemical equilibria of 

inorganic carbon in the liquid phase and the transfer of carbon dioxide, the dynamic mass 

balances of the different inorganic carbon sources can be expressed as:  

   ”  ”
ȟ

 πȢχςρ ”                                                                      (4.8) 

   ”  ” ρȢπρφ ”                                                                     (4.9) 

  ”                                                                                                                             (4.10) 

With ὣ (g DW g-1 HCO3) and ὣ (g DW g-1 CO2) yield coefficients for growth on bicarbonate 

and carbon dioxide respectively. 

 

4.2.3.1.3 Oxygen production and oxygen transfer 

 

The dynamic mass balance of dissolved oxygen, including oxygen production and oxygen 

transfer can be expressed as:  

  ὣ ”  ὣ ”  ”
ȟ
                                                                        (4.11) 

With ὣ (g O2 g
-1 DW) the oxygen produced per gram of biomass.  

In Table 4.1 an overview of the different processes (Gujer matrix) is given. 
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Table 4.1: Gujer matrix of the microalgal growth model (=Algcarb model) 

Process 

Ὓ  Ὓ  Ὓ  Ὓ  ὢ  
Process 

Rate (g HCO3
- m-3)     (g CO2 m3) (g CO3

2- m-3) (g O2 m-3)       (g DW m-3) 

Growth on 

HCO3
- 

 ͅρ

ὣ
   ὣ 1 ”  

Growth on 

CO2 
 

ρ

ὣ
  ὣ 

1 ”  

               

  

  

 Decay     

-1 

”   

 

O2  transfer    1  ” ȟ  

CO2 transfer  1    ” ȟ  

CO2 

hydration 
0.72 -1    ”  

HCO3
 ï

dissocia 

tion 

-1.02  1   ”  

 

4.2.3.1.3 Parameter values 

 

Default values for the parameters are summarized in Table 4.2 and were obtained from literature 

(Alex et al., 2010; Aseada and Van Bon, 1997; Dochain et al., 2003; Kayombo et al., 2000; 

Omlin et al., 2001; Reichert et al., 2001; Wolf et al., 2007). In case parameters were used in an 

estimation (see further) the range that was used is provided.  

The dissociation constants (pKa) for the hydration of carbon dioxide and the dissociation of 

bicarbonate were taken as 6.36 and 10.33, respectively (Stumm and Morgan, 1996). The rate 

constants for these reactions were chosen to be 10000 d-1 for Ὧ and Ὧ = 100000 d-1             

(Gehring et al., 2010), respectively indicating very fast reactions.  

The values for the yields for the production of biomass from bicarbonate or dissolved carbon 

dioxide and the yield of oxygen production were determined stoichiometrically from Equations 



Chapter 4 

66 

 

(2.5) and (2.6). The maximum decay rate ὦ  was set to a value of 0.001 d-1 because tests 

were short and the decay rate was considered not to play a significant role. 

At this stage, to have insight in the methodology, only the respirometric profile was considered 

for model calibration, similar to activated sludge respirometry. At first, the model was tested 

by manually changing the values of different parameters. This illustrated that ʈ  and ὑὥ 

had strong influence on the respirometric profile. This was not the case for other parameters 

such as ὑ  for example. As such it was decided to use these 2 parameters for further model 

calibration. 

Table 4.2: Parameter values used for simulations with the Algcarb model 

Parameter 
Literature 

range 

Assigned 

value 
Unit 

ʈ    0.1-11 *  d-1 

ὦ   0.003-0.1 0.01 d-1 

ὣ  0.549 0.549 g DW g-1 HCO3
- 

ὣ  0.761 0.761 g DW g-1 CO2 

ὣ  1.24 1.24 g O2 g-1 DW 

ὑ   0.061-6.1 3 g HCO3
- m-3 

ὑ   0.044-4.4 0.2 g CO2 m-3 

ὑὥ    *  d-1 

Ὧ  2221-105 10000 d-1 

Ὧ  104-1012 100000 d-1 

ὴὑ  6.36 6.36 - 

ὴὑ   10.33 10.33 - 

 

(*) Parameter considered for model calibration 
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4.3 Results and discussion  

 

4.3.1. Data collection and derived information  

 

Figure 4.2 (top) shows a typical result of a respirometric-titrimetric experiment. The results are 

repeatable and similar profiles were obtained when certain experimental conditions were 

modified (e.g. different spiked quantities of bicarbonate, different algal biomass concentration).  

The dissolved oxygen profile is the result of the balance between (1) oxygen produced by the 

algae during the consumption of the pulse of bicarbonate which was added to the system and 

(2) oxygen removed from the system through transport to the atmosphere as described by 

Equation (2.3). Upon addition of an inorganic carbon source (in this experiment 100 g HCO3
- 

m-3), the initial dynamic equilibrium is disturbed as more dissolved oxygen is produced than 

removed. This results in a rapid increase of the dissolved oxygen concentration. However, this 

increase is limited by the maximum growth rate of the algae (i.e. metabolic limitation) which 

leads to a new steady state (plateau in time interval 0.1-0.15 d). At some point the inorganic 

carbon source is depleted (approx. 0.16 d) and limits the DO production. This leads to a decrease 

in DO, eventually returning to the state the system was in prior to the addition of inorganic 

carbon source. Along with the consumption of bicarbonate, protons are removed from the 

system. Due to the fact that pH is controlled at a fixed set-point (here 7.5), proton addition is 

needed. According to the dashed line in Figure 4.2 (top), this happens at a constant rate 

(TPAR=11.80 g m-3 d-1) during the time interval between spiking and depletion of bicarbonate. 

After depletion, the proton addition reduces to the BSAR level, in this case 0.141 g m-3 d-1, or 

about 1% of the TPAR. This results in a HAR for the consumption of the pulse of HCO3
- of 

11.70 g m-3 d-1. The specific HAR (expressed per unit biomass) at the beginning of the 

experiment (ὴ ) is determined to be 0.024 g H g-1 DW. The total amount of protons added for 

the consumption of the added pulse of bicarbonate can be determined by integrating the 

titrimetric profile yielding 1.86 g H+ m-3. Equation (2.6) allows an exact calculation of the 

stoichiometrically required amount of acid (given the equations hold): a concentration of 100 g 

m-3 HCO3
- yields 1.92 g H+ m-3 that needs to be added to maintain a fixed pH. Hence, the 

titrimetric method had in this case a recovery rate of 97%, proving to be accurate. The calculated 

OPR and OTR from the dissolved oxygen profile are shown in Figure 4.2 (bottom). The 
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maximum OPR of the algae after spiking with the inorganic carbon has an average of about 250 

g O2 m
-3 d1. Hence, the maximum rate of oxygen production per unit of DW of algae (pO2,max) 

equals 0.523 g O2 g DW-1 d-1. The total amount of oxygen produced is determined by 

integrating the OPR curve and equals 39.94 g O2
 m-3 . This is significantly lower than the 

theoretical amount that can be produced according to Equation (2.6) from the amount of 

bicarbonate (100 g m-3) added to the system, being 68.30 g O2 m
-3. From these results the 

recovery rate only amounts to about 58.4 %. This low recovery can be explained as follow. 

First, respiration is not taken into account when interpreting the data. Indeed, microalgae use 

oxygen for their maintenance metabolism, thus lowering the total amount of oxygen produced. 

This type of respiration is called dark respiration (Wolf et al., 2007). Also, with respect to the 

proton addition, dark respiration will have an influence on the proton addition rate. However, 

according to Kliphuis (2010), this is maximum 10 % of the proton addition due to  

photosynthetic activity. In addition, photorespiration can occur at high oxygen to carbon 

dioxide ratio in the solution, and as such inhibition of the photosynthesis occurs (Nigel et al., 

1977) Birmingham et al. (1981) stressed, that photorespiration is only inhibited at the CO2 

saturation level in the water. However, quantification of the photorespiration rate is difficult. 

This because this it depends on the ratio of concentration of O2/CO2 in the vicinity of the rubisco 

enzyme. According to Kliphuis (2010) it is very difficult to determine the latter. Ogren (1984) 

mentioned a formula to express the relative photorespiration for isolated Rubisco. However, in 

a whole cell, several transport processes play a role in the functioning of the Rubisco. Hence, 

the proposed formula was only an estimation. Kliphuis (2010) applied the expression and found 

that the maximum photorespiration rate is smaller than 4% of the photosynthetic activity. This 

was the case for experiments that were conducted under conditions similar to the ones presented 

in this chapter. Therefore, it can be concluded that photorespiration is negligible.  
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Figure 4.2: Example of a respirometric experiment (top figure). The full line illustrates the respirometric 

profile  and the dashed line  the proton addition. In the bottom figure, the resulting OPR (full line)  and OTR 

(dashed line) (bottom figure) in case of 100 g m-3 HCO3
- and an algal concentration of 478 g DW m-3 and 

with a light intensity of 4875 lux. pH is controlled at 7.5. Temperature is set at 288 K.       

Another possible explanation is that not the entire amount of inorganic carbon source is 

available for the algae to be consumed and as such for oxygen production. As mentioned before, 

next to oxygen stripping to the atmosphere, also stripping of carbon dioxide occurs. An initial 

concentration of 100 HCO3
- g m-3 or 0.001639 mol l-1 total inorganic carbon corresponds, based 

on Equations (2.11) and (2.12), to 0.000149 mol l-1 H2CO3, 0.001489 mol l-1 HCO3
- and           

9.39 x 10-7 mol l-1 CO3
2- at pH 7.5. Consumption of 1 mol inorganic carbon leads to addition of                

1 mol H+. As such the concentration of carbon dioxide in the respirometer can be calculated 

based on the addition of protons. Further, according to Equation (2.9), the carbon dioxide 

transfer rate can be calculated from concentration and is depicted in Figure 4.3, proving to be 

significant. Integrating this curve results in 22.82 g m-3 HCO3
- transfer to the atmosphere. 

Accounting for this loss of inorganic carbon, a total recovery of 92.98 % is obtained. As such 

it can be concluded that there is a significant amount of inorganic carbon that is not available 

for the microalgae due to stripping resulting in rather low recovery when expressed in the 

amount of oxygen produced and that CO2 transfer should be incorporated in both data 

interpretation and modelling. 
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Figure 4.3: Visualisation of the CO2 transfer rate (top) and HCO3
- and CO2 concentration (bottom) with 

100 g m-3 and 478 g DW m-3 at pH 7.5 and 288 K. The KLa was set at 19 d-1. In the bottom figure, the full 

line represents the calculated evolution of bicarbonate, and the dashed line the evolution of carbon dioxide. 

 

4.3.2 Model calibration  

 

The model was optimized by fitting its output to three different data sets of the respirometric 

experiments with 75 mg sodium bicarbonate (or 72. 6 g HCO3
- m-3) added to 267 g DW m-3  

(Figure 4.4A), 75 mg sodium bicarbonate added to 252 g DW m-3 (Figure 4.4B) and 150 mg 

sodium bicarbonate (or 145.2 g HCO3
- m-3) added to 459 g DW m-3 (Figure 4.4C). The model 

is able to describe the DO-profile acceptably well. The values of the optimized parameters are 

presented in Table 4.3.  

As can been seen the maximum growth rates of the three different experiments are very similar 

and are comparable with values found in literature (Menaa et al., 2015). For these three 

experiments the KLa spans the range from 15.83 to 26.79 d-1. The consumption rate of inorganic 

carbon is also plotted and is very similar in the tested cases. 
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