A Relational Approach to Stochastic Dominance

Bernard DE BAETS and Hans DE MEYER
Contents

- Stochastic dominance
- Transitivity of probabilistic relations
- Graded alternatives
- Non-graded alternatives
- Future directions
1. Introduction

Purpose of stochastic dominance:

- to define a *(partial) order relation* on a set of real-valued random variables (RV)
- endowed with the semantics of a *weak preference relation*:

 RV taking higher values are preferred
1. Introduction

Purpose of stochastic dominance:

- to define a (partial) order relation on a set of real-valued random variables (RV)

- endowed with the semantics of a weak preference relation:

 RV taking higher values are preferred

General principle:

- pairwise comparison of RV

- pointwise comparison of performance functions

- constructed from the distribution function
1. Performance functions

- **The cumulative distribution function (CDF) F_X:**
 \[F_X(x) = \text{Prob}\{X \leq x\} \]

- **The area below the CDF F_X:**
 \[G_X(x) = \int_{-\infty}^{x} F_X(t) \, dt \]
1. 1st and 2nd degree stochastic dominance (SD)

Weak dominance relation:

<table>
<thead>
<tr>
<th>$X \geq_{\text{FSD}} Y$</th>
<th>$\overset{\text{def}}{\iff}$</th>
<th>$F_X \leq F_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\iff</td>
<td>$E[u(X)] \geq E[u(Y)]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for any non-decreasing function u</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$X \geq_{\text{SSD}} Y$</th>
<th>$\overset{\text{def}}{\iff}$</th>
<th>$G_X \leq G_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\iff</td>
<td>$E[u(X)] \geq E[u(Y)]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for any non-decreasing concave function u</td>
<td></td>
</tr>
</tbody>
</table>
1. **1st and 2nd degree stochastic dominance (SD)**

Weak dominance relation:

\[
X \succeq_{\text{FSD}} Y \iff F_X \leq F_Y \\
\iff E[u(X)] \geq E[u(Y)] \\
\text{for any non-decreasing function } u
\]

\[
X \succeq_{\text{SSD}} Y \iff G_X \leq G_Y \\
\iff E[u(X)] \geq E[u(Y)] \\
\text{for any non-decreasing concave function } u
\]

Strict dominance relation:

\[
X \succ Y \iff X \succeq Y \text{ and } Y \not\succeq X
\]
1. Graphical illustration of FSD
1. Application areas

- Decision making under uncertainty

- Risk averse preference models in economics and finance:
 - e.g. in portfolio optimisation

- Social statistics:
 - e.g. in the comparison of welfare and poverty indicators

- Machine learning and multi-criteria decision making:
 - e.g. in ranking (= ordered sorting) algorithms
1. Discussion

SD induces a **crisp partial order relation** on a set of RV:

- **crisp**: no tolerance for small deviations, no grading
- **partial**: usually **sparse** graphs
1. Discussion

SD induces a **crisp partial order relation** on a set of RV:
- crisp: **no tolerance** for small deviations, **no grading**
- partial: usually **sparse** graphs

SD is theoretically attractive, but **computationally difficult**
1. Discussion

SD induces a **crisp partial order relation** on a set of RV:
- crisp: no tolerance for small deviations, no grading
- partial: usually **sparse** graphs

SD is theoretically attractive, but **computationally difficult**

SD uses **marginal distributions** only:
- does not take into account **dependence** between RV
1. Discussion

- SD induces a **crisp partial order relation** on a set of RV:
 - **crisp**: no tolerance for small deviations, no grading
 - **partial**: usually **sparse** graphs

- SD is theoretically attractive, but **computationally difficult**

- SD uses **marginal distributions** only:
 - does not take into account **dependence** between RV

- SSD accumulates area from $-\infty$ onwards
 - introduces an **absolute reference point**
1. Main objective: graded variants of SD

- Pairwise construction of a “transitive" valued relation on a set of RV which:
 - avoids the pointwise comparison of performance functions
 - allows to incorporate dependence between the RV
 - avoids specific reference points
 - allows to induce a strict order relation on the set of RV
1. Main objective: graded variants of SD

- Pairwise construction of a “transitive" valued relation on a set of RV which:
 - avoids the pointwise comparison of performance functions
 - allows to incorporate dependence between the RV
 - avoids specific reference points
 - allows to induce a strict order relation on the set of RV

- Key instrument: probabilistic relations and cycle-transitivity
2. Probabilistic relations and cycle-transitivity

Probabilistic relation Q on $X: Q : X^2 \rightarrow [0, 1]$ such that

$$Q(a, b) + Q(b, a) = 1$$
2. Probabilistic relations and cycle-transitivity

Probabilistic relation Q on X: $Q : X^2 \rightarrow [0, 1]$ such that

$$Q(a, b) + Q(b, a) = 1$$

<table>
<thead>
<tr>
<th></th>
<th>a_{abc}</th>
<th>β_{abc}</th>
<th>γ_{abc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>$\min{Q(a, b), Q(b, c), Q(c, a)}$</td>
<td>$\text{median}{Q(a, b), Q(b, c), Q(c, a)}$</td>
<td>$\max{Q(a, b), Q(b, c), Q(c, a)}$</td>
</tr>
</tbody>
</table>
A probabilistic relation Q on A is called cycle-transitive w.r.t. an upper bound function U if for any $a, b, c \in A$

$$L(\alpha_{abc}, \beta_{abc}, \gamma_{abc}) \leq \alpha_{abc} + \beta_{abc} + \gamma_{abc} - 1 \leq U(\alpha_{abc}, \beta_{abc}, \gamma_{abc})$$

with the dual lower bound function L defined by

$$L(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)$$
A probabilistic relation Q on A is called cycle-transitive w.r.t. an upper bound function U if for any $a, b, c \in A$

\[
L(\alpha_{abc}, \beta_{abc}, \gamma_{abc}) \leq \alpha_{abc} + \beta_{abc} + \gamma_{abc} - 1 \leq U(\alpha_{abc}, \beta_{abc}, \gamma_{abc})
\]

with the dual lower bound function L defined by

\[
L(\alpha, \beta, \gamma) = 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)
\]

A function $U : \Delta = \{(x, y, z) \in [0, 1]^3 \mid x \leq y \leq z\} \rightarrow \mathbb{R}$ is called an upper bound function if it satisfies:

- $U(0, 0, 1) \geq 0$ and $U(0, 1, 1) \geq 1$
- for any $(\alpha, \beta, \gamma) \in \Delta$:

\[
U(\alpha, \beta, \gamma) \geq 1 - U(1 - \gamma, 1 - \beta, 1 - \alpha)
\]
A probabilistic relation Q on A is called g-stochastic transitive if

$$(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)$$

<table>
<thead>
<tr>
<th>type</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong stochastic transitivity</td>
<td>max</td>
</tr>
<tr>
<td>moderate stochastic transitivity</td>
<td>min</td>
</tr>
<tr>
<td>weak stochastic transitivity</td>
<td>1/2</td>
</tr>
</tbody>
</table>
2. Probabilistic relations and stochastic transitivity

A probabilistic relation Q on A is called g-stochastic transitive if

$$(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)$$

<table>
<thead>
<tr>
<th>type</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong stochastic transitivity</td>
<td>max</td>
</tr>
<tr>
<td>moderate stochastic transitivity</td>
<td>min</td>
</tr>
<tr>
<td>weak stochastic transitivity</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>

Moderate stochastic transitivity: equivalent to transitivity of cut relations Q_α, $\alpha \geq 1/2$
2. Probabilistic relations and stochastic transitivity

A probabilistic relation Q on A is called g-stochastic transitive if

$$(Q(a, b) \geq 1/2 \land Q(b, c) \geq 1/2) \Rightarrow g(Q(a, b), Q(b, c)) \leq Q(a, c)$$

<table>
<thead>
<tr>
<th>type</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong stochastic transitivity</td>
<td>max</td>
</tr>
<tr>
<td>moderate stochastic transitivity</td>
<td>min</td>
</tr>
<tr>
<td>weak stochastic transitivity</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Moderate stochastic transitivity: equivalent to transitivity of cut relations Q_α, $\alpha \geq 1/2$

Partial stochastic transitivity: a weaker variant of moderate stochastic transitivity
2. General framework indeed

Commutative, increasing function g such that $g(1/2, x) \leq x$

Theorem: g-stochastic transitivity = cycle-transitivity w.r.t.

$$U_g(\alpha, \beta, \gamma) = \begin{cases}
\beta + \gamma - g(\beta, \gamma) & , \text{if } \beta \geq 1/2 \land \alpha < 1/2 \\
1/2 & , \text{if } \alpha = 1/2 \\
2 & , \text{if } \beta < 1/2
\end{cases}$$
2. General framework indeed

- Commutative, increasing function g such that $g(1/2, x) \leq x$
- Theorem: g-stochastic transitivity = cycle-transitivity w.r.t.

$U_g(\alpha, \beta, \gamma) = \begin{cases}
\beta + \gamma - g(\beta, \gamma) & \text{, if } \beta \geq 1/2 \land \alpha < 1/2 \\
1/2 & \text{, if } \alpha = 1/2 \\
2 & \text{, if } \beta < 1/2
\end{cases}$

- Moderate stochastic transitivity:

$U_{ms}(\alpha, \beta, \gamma) = \begin{cases}
1/2 & \text{, if } \alpha = 1/2 \\
\gamma & \text{, else}
\end{cases}$
2. General framework indeed

Commutative, increasing function g such that $g(1/2, x) \leq x$

Theorem: g-stochastic transitivity $=$ cycle-transitivity w.r.t.

$$U_g(\alpha, \beta, \gamma) = \begin{cases}
\beta + \gamma - g(\beta, \gamma) & \text{, if } \beta \geq 1/2 \land \alpha < 1/2 \\
1/2 & \text{, if } \alpha = 1/2 \\
2 & \text{, if } \beta < 1/2
\end{cases}$$

Moderate stochastic transitivity:

$$U_{ms}(\alpha, \beta, \gamma) = \begin{cases}
1/2 & \text{, if } \alpha = 1/2 \\
\gamma & \text{, else}
\end{cases}$$

Partial stochastic transitivity: $$U_{ps}(\alpha, \beta, \gamma) = \gamma$$
2. Fuzzy relations and T-transitivity

Fuzzy relation R on X: $R : X^2 \rightarrow [0, 1]$
2. Fuzzy relations and T-transitivity

Fuzzy relation R on X: $R : X^2 \to [0, 1]$

Triangular norm (t-norm): $T : [0, 1]^2 \to [0, 1]$ such that
- increasing, neutral element 1 (and absorbing element 0)
- commutative and associative
2. Fuzzy relations and T-transitivity

Fuzzy relation R on X: $R : X^2 \rightarrow [0, 1]$

Triangular norm (t-norm): $T : [0, 1]^2 \rightarrow [0, 1]$ such that
- increasing, neutral element 1 (and absorbing element 0)
- commutative and associative

Basic t-norms:

<table>
<thead>
<tr>
<th>minimum</th>
<th>T_M</th>
<th>$\min(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>T_P</td>
<td>xy</td>
</tr>
<tr>
<td>Łukasiewicz t-norm</td>
<td>T_L</td>
<td>$\max(x + y - 1, 0)$</td>
</tr>
</tbody>
</table>
2. Fuzzy relations and T-transitivity

- **Fuzzy relation** R on X: $R : X^2 \rightarrow [0, 1]$

- **Triangular norm** (t-norm): $T : [0, 1]^2 \rightarrow [0, 1]$ such that
 - increasing, neutral element 1 (and absorbing element 0)
 - commutative and associative

- **Basic t-norms:**
<table>
<thead>
<tr>
<th>Minimum</th>
<th>T_M</th>
<th>$\min(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>T_P</td>
<td>xy</td>
</tr>
<tr>
<td>Łukasiewicz t-norm</td>
<td>T_L</td>
<td>$\max(x + y - 1, 0)$</td>
</tr>
</tbody>
</table>

- **T-transitivity of a fuzzy relation** R:

 $T(R(a, b), R(b, c)) \leq R(a, c)$
2. The Frank t-norm family

Prototypical solutions of the functional equation:

\[T(x, y) + 1 - T(1 - x, 1 - y) = x + y \]
2. The Frank t-norm family

Prototypical solutions of the functional equation:

\[T(x, y) + 1 - T(1 - x, 1 - y) = x + y \]

Frank t-norm family \((T^F_s)_{s \in [0, \infty]} \): for \(s \in]0, 1[\cup]1, \infty[\)

\[T^F_s(x, y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1}\right) \]
2. The Frank t-norm family

- Prototypical solutions of the functional equation:

\[T(x, y) + 1 - T(1 - x, 1 - y) = x + y \]

- Frank t-norm family \((T_s^F)_{s \in [0, \infty]}: \text{for } s \in [0, 1] \cup [1, \infty[\):

\[T_s^F(x, y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1} \right) \]

- Limit cases:

<table>
<thead>
<tr>
<th>limit</th>
<th>t-norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(T_M)</td>
</tr>
<tr>
<td>1</td>
<td>(T_P)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(T_L)</td>
</tr>
</tbody>
</table>
2. General framework indeed

1-Lipschitz t-norm T:

$$|T(x_1, y_1) - T(x_2, y_2)| \leq |x_1 - x_2| + |y_1 - y_2|$$
2. General framework indeed

1-Lipschitz t-norm T:

$$|T(x_1, y_1) - T(x_2, y_2)| \leq |x_1 - x_2| + |y_1 - y_2|$$

Theorem: T-transitivity = cycle-transitivity w.r.t.

$$U_T(\alpha, \beta, \gamma) = \alpha + \beta - T(\alpha, \beta)$$

<table>
<thead>
<tr>
<th>t-norm</th>
<th>upper bound function</th>
<th>equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_M</td>
<td>$\max(\alpha, \beta)$</td>
<td>β</td>
</tr>
<tr>
<td>T_P</td>
<td>$\alpha + \beta - \alpha \beta$</td>
<td></td>
</tr>
<tr>
<td>T_L</td>
<td>$\min(\alpha + \beta, 1)$</td>
<td>1</td>
</tr>
</tbody>
</table>
2. General framework indeed

- **1-Lipschitz t-norm** T:

\[
|T(x_1, y_1) - T(x_2, y_2)| \leq |x_1 - x_2| + |y_1 - y_2|
\]

- **Theorem**: T-transitivity = cycle-transitivity w.r.t.

\[
U_T(\alpha, \beta, \gamma) = \alpha + \beta - T(\alpha, \beta)
\]

<table>
<thead>
<tr>
<th>t-norm</th>
<th>upper bound function</th>
<th>equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_M</td>
<td>$\max(\alpha, \beta)$</td>
<td>β</td>
</tr>
<tr>
<td>T_P</td>
<td>$\alpha + \beta - \alpha\beta$</td>
<td></td>
</tr>
<tr>
<td>T_L</td>
<td>$\min(\alpha + \beta, 1)$</td>
<td>1</td>
</tr>
</tbody>
</table>

- Frank t-norms are 1-Lipschitz
3. Pairwise comparison

Random vector \((X, Y)\): winning probabilities

\[
Q(X, Y) = \text{Prob}\{X > Y\} + \frac{1}{2} \text{Prob}\{X = Y\}
\]

leads to reciprocity: \(Q(X, Y) + Q(Y, X) = 1\)

is based on the joint distribution, and not on marginal ones
3. Pairwise comparison

Random vector (X, Y): winning probabilities

\[Q(X, Y) = \text{Prob}\{X > Y\} + \frac{1}{2} \text{Prob}\{X = Y\} \]

leads to reciprocity: $Q(X, Y) + Q(Y, X) = 1$

is based on the joint distribution, and not on marginal ones

Special cases:
- discrete random vector:
 \[Q(X, Y) = \sum_{k > l} p_{X,Y}(k, l) + \frac{1}{2} \sum_k p_{X,Y}(k, k) \]
- continuous random vector:
 \[Q(X, Y) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} f_{X,Y}(x, y) \, dy \]
3. Copulas

Copula: \(C : [0, 1]^2 \to [0, 1] \) such that
- neutral element 1, absorbing element 0
- moderate growth:

\[
(x_1 \leq x_2 \land y_1 \leq y_2) \Rightarrow C(x_1, y_1) + C(x_2, y_2) \geq C(x_1, y_2) + C(x_2, y_1)
\]
3. Copulas

- **Copula:** $C : [0, 1]^2 \rightarrow [0, 1]$ such that
 - neutral element 1, absorbing element 0
 - moderate growth:

\[
\left(x_1 \leq x_2 \land y_1 \leq y_2 \right) \Rightarrow C(x_1, y_1) + C(x_2, y_2) \geq C(x_1, y_2) + C(x_2, y_1)
\]

- Frank t-norms are copulas and $T_L \leq C \leq T_M$

- Relationship between t-norms and copulas:

 \[
 \text{copula + associativity } \subseteq \text{ t-norm}
 \]
 \[
 \text{t-norm + 1-Lipschitz } \subseteq \text{ copula}
 \]
3. Sklar’s theorem

Random vector \((X, Y)\): there exists a copula \(C\) s.t.

\[
F_{X,Y}(x, y) = C(F_X(x), F_Y(y))
\]
3. **Sklar’s theorem**

- Random vector \((X, Y)\): there exists a copula \(C\) s.t.
 \[
 F_{X,Y}(x, y) = C(F_X(x), F_Y(y))
 \]

- Captures dependence structure irrespective of the marginals
3. Sklar’s theorem

Random vector \((X, Y)\): there exists a copula \(C\) s.t.

\[
F_{X,Y}(x, y) = C(F_X(x), F_Y(y))
\]

Captures dependence structure irrespective of the marginals

Probabilistic interpretation:

\(T_M\)	co-monotonicity
\(T_P\)	independence
\(T_L\)	counter-monotonicity
3. Case 1: generalized dice

- \(X \) and \(Y \) uniformly distributed on multisets of cardinality \(n \)

- Order elements of multiset \(A_X \) increasingly:
 \[
 x_1 \leq x_2 \leq \cdots \leq x_n
 \]

- Order elements of multiset \(A_Y \) increasingly:
 \[
 y_1 \leq y_2 \leq \cdots \leq y_n
 \]
3. The case $C = T_P$: independent comparison

Probabilistic relation:

$$Q^P(X, Y) = \frac{1}{n^2} \sum_{k,l=1}^{n} \delta^P_{kl}$$

with

$$\delta^P_{kl} = \begin{cases}
1 & \text{, if } x_k > y_l \\
1/2 & \text{, if } x_k = y_l \\
0 & \text{, if } x_k < y_l
\end{cases}$$
3. Example

\[Q^P(X, Y) = \frac{7}{16} \]
3. The case $C = T_M$: co-monotone comparison

Probabilistic relation:

$$Q^M(X, Y) = \frac{1}{n} \sum_{k=1}^{n} \delta^M_k$$

with

$$\delta^M_k = \begin{cases}
1, & \text{if } x_k > y_k \\
1/2, & \text{if } x_k = y_k \\
0, & \text{if } x_k < y_k
\end{cases}$$
3. The case $C = T_L$: counter-monotone comparison

Probabilistic relation:

$$Q^L(X, Y) = \frac{1}{n} \sum_{k=1}^{n} \delta^L_k$$

with

$$\delta^L_k = \begin{cases}
1, & \text{if } x_k > y_{n-k+1} \\
1/2, & \text{if } x_k = y_{n-k+1} \\
0, & \text{if } x_k < y_{n-k+1}
\end{cases}$$
3. Example (continued)

\[Q^M(X, Y) = \frac{3}{8} \quad Q^L(X, Y) = \frac{1}{2} \]
3. Case 2: continuous RV

The case T_P: independent RV

$$Q^P(X, Y) = E_X[F_Y]$$
3. Case 2: continuous RV

The case T_P: independent RV

$$Q^P(X, Y) = E_X[F_Y]$$

The case T_M: co-monotone RV

$$Q^M(X, Y) = \int_{x:F_X(x)<F_Y(x)} f_X(x) \, dx + \frac{1}{2} \int_{x:F_X(x)=F_Y(x)} f_X(x) \, dx$$

$Q^M(X, Y) = 1$ iff $F_X < F_Y$ where $f_X \neq 0$:

more restrictive than \succ_{FSD}
$Q^M(X, Y) = t_1 + t_3 + \frac{1}{2} t_2$
3. The compatibility problem

Random vector \((X_1, X_2, \ldots, X_n)\): there exist copulas \(C_{ij}\) s.t.

\[
F_{X_i,X_j}(x,y) = C_{ij}(F_{X_i}(x), F_{X_j}(y))
\]
3. The compatibility problem

Random vector \((X_1, X_2, \ldots, X_n)\): there exist copulas \(C_{ij}\) s.t.

\[
F_{X_i,X_j}(x, y) = C_{ij}(F_{X_i}(x), F_{X_j}(y))
\]

The compatibility problem:

- not all combinations of copulas are possible
- all \(C_{ij} = C\) is possible for \(C \in \{T_M, T_P\}\)
- \(C_{12} = C_{13} = C_{23} = T_L\) is impossible
3. The compatibility problem

- Random vector \((X_1, X_2, \ldots, X_n)\): there exist copulas \(C_{ij}\) s.t.

\[
F_{X_i, X_j}(x, y) = C_{ij}(F_{X_i}(x), F_{X_j}(y))
\]

- The compatibility problem:
 - not all combinations of copulas are possible
 - all \(C_{ij} = C\) is possible for \(C \in \{T_M, T_P\}\)
 - \(C_{12} = C_{13} = C_{23} = T_L\) is impossible

- Artificial coupling:
 - winning probabilities require only bivariate coupling
 - copula = comparison strategy
 - does not reflect the real dependence
3. Coupling by the same copula: cycle-transitivity

Stable commutative copulas:

\[C(x, y) + 1 - C(1 - x, 1 - y) = x + y \]
3. Coupling by the same copula: cycle-transitivity

- Stable commutative copulas:

\[C(x, y) + 1 - C(1 - x, 1 - y) = x + y \]

- Theorem: for a stable commutative copula \(C \), the probabilistic relation \(Q^C \) is cycle-transitive w.r.t.

\[U^C(\alpha, \beta, \gamma) = \gamma + C(\beta, 1 - \gamma) \]
3. Coupling by the same copula: cycle-transitivity

Frank t-norms are stable commutative copulas:

\[U^s(\alpha, \beta, \gamma) = \beta + \gamma - T^F_s(\beta, \gamma) \]
3. Coupling by the same copula: cycle-transitivity

Frank t-norms are stable commutative copulas:

\[U^s(\alpha, \beta, \gamma) = \beta + \gamma - T^F_s(\beta, \gamma) \]

<table>
<thead>
<tr>
<th>copula</th>
<th>upper bound f.</th>
<th>equivalent</th>
<th>known as</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_M)</td>
<td>(\min(\beta + \gamma, 1))</td>
<td>(1)</td>
<td>(T_L)-transitivity</td>
</tr>
<tr>
<td>(T_P)</td>
<td>(\beta + \gamma - \beta\gamma)</td>
<td>(\gamma)</td>
<td>dice-transitivity</td>
</tr>
<tr>
<td>(T_L)</td>
<td>(\max(\beta, \gamma))</td>
<td></td>
<td>partial stochastic transitivity</td>
</tr>
</tbody>
</table>
4. Statistical preference and cycles

Statistical preference: $X \succeq Y$ if $Q(X, Y) \geq 1/2$
4. Statistical preference and cycles

Statistical preference: \(X \succeq Y \) if \(Q(X, Y) \geq 1/2 \)

Theorem: FSD implies statistical preference
4. Statistical preference and cycles

- **Statistical preference**: \(X \succeq Y \) if \(Q(X, Y) \geq 1/2 \)

- **Theorem**: FSD implies statistical preference

- \(\succeq \) can contain cycles:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>18</td>
</tr>
</tbody>
</table>

![Diagram](image1.png)
4. Exploiting cycle-transitivity: T_P

The relation $>^3_\text{P}$

$$X >^3_\text{P} Y \iff Q^\text{P}(X, Y) > \frac{\sqrt{5} - 1}{2}$$

is an asymmetric relation without cycles of length 3

The golden section $\frac{\sqrt{5}-1}{2}$: $\frac{22}{36} < \frac{\sqrt{5}-1}{2} < \frac{23}{36}$
4. A picture says more than . . .
5. Independent comparison revisited

Probabilistic relation:

\[
Q^P(X, Y) = \frac{1}{n^2} \sum_{k,l=1}^{n} \delta^P_{kl}
\]

with

\[
\delta^P_{kl} = \begin{cases}
1, & \text{if } x_k > y_l \\
1/2, & \text{if } x_k = y_l \\
0, & \text{if } x_k < y_l
\end{cases}
\]
5. A generalization

Probabilistic relation: \(p \in \mathbb{R}^+ \)

\[
Q^p_p(X, Y) = \frac{\sum_{k,l=1}^{n} \max(x_k - y_l, 0)^p}{\sum_{k,l=1}^{n} |x_k - y_l|^p}
\]

with \(0/0 = 1/2 \)
5. The case of continuous RV and $p = 1$

Limit case $p = 0$: $Q_0^P = Q^P$

$Q_0^P (X, Y) = E_X[F_Y]$

since $E_X[F_Y] + E_Y[F_X] = 1$:

$$Q_0^P (X, Y) = \frac{E_X[F_Y]}{E_X[F_Y] + E_Y[F_X]}$$
5. The case of continuous RV and $p = 1$

- **Limit case** $p = 0$: $Q_0^p = Q^p$

 $Q_0^p(X, Y) = E_X[F_Y]$

- since $E_X[F_Y] + E_Y[F_X] = 1$:

 $Q_0^p(X, Y) = \frac{E_X[F_Y]}{E_X[F_Y] + E_Y[F_X]}$

- **The case** $p = 1$:

 - compact formula:

 $Q_1^p(X, Y) = \frac{E_X[G_Y]}{E_X[G_Y] + E_Y[G_X]}$

- second degree stochastic dominance?
5. Co-monotone comparison revisited

Probabilistic relation:

\[Q^M(X, Y) = \frac{1}{n} \sum_{k=1}^{n} \delta_k^M \]

with

\[\delta_k^M = \begin{cases}
1 & \text{, if } x_k > y_k \\
1/2 & \text{, if } x_k = y_k \\
0 & \text{, if } x_k < y_k
\end{cases} \]
5. Co-monotone comparison revisited

Probabilistic relation: $p \in \mathbb{R}^+$

$$Q_p^M(X, Y) = \frac{\sum_{k=1}^{n} \max(x_k - y_k, 0)^p}{\sum_{k=1}^{n} |x_k - y_k|^p}$$
5. Co-monotone comparison revisited

Probabilistic relation: \(p \in \mathbb{R}^+ \)

\[
Q_p^M(X, Y) = \frac{\sum_{k=1}^{n} \max(x_k - y_k, 0)^p}{\sum_{k=1}^{n} |x_k - y_k|^p}
\]

Limit case: \(Q_0^M = Q^M \)
5. Co-monotone comparison revisited

- Probabilistic relation: \(p \in \mathbb{R}^+ \)

\[
Q_p^M(X, Y) = \frac{\sum_{k=1}^{n} \max(x_k - y_k, 0)^p}{\sum_{k=1}^{n} |x_k - y_k|^p}
\]

- Limit case: \(Q_0^M = Q^M \)

- The case of continuous RV and \(p = 1 \):

\[
Q_1^M(X, Y) = \frac{\int \max(F_Y(x) - F_X(x), 0) \, dx}{\int |F_Y(x) - F_X(x)| \, dx}
\]
5. Graphical illustration
5. Transitivity

- **Theorem**: the probabilistic relation Q^M_1 is moderately stochastic transitive

- The strict order relation at $1/2$:

 $$Q^M_1(X, Y) > \frac{1}{2} \iff \mathbb{E}[X] > \mathbb{E}[Y]$$

- Any weak ($> 1/2$) or strict ($\geq 1/2$) cutting level α yields a strict order relation:

 - with increasing α the graph become more and more sparse (Hasse tree)
Thank you for your attention!

Bernard.DeBaets@UGent.be